Editor-in-Chief
S.M. McCann, Dallas, Tex.
Associate Editors
C.P. Fawcett, Dallas, Tex. L. Krulich, Dallas, Tex. J.C. Porter, Dallas, Tex.
Editorial Board
J. Antunes-Rodrigues, Ribeirão Preto
N. Ben-Jonathan, Indianapolis, Ind.
J.E. Blalock, Birmingham, Ala.
D. Cardinali, Buenos Aires
G.V. Childs, Galveston, Tex.
M.J. Cronin, South San Francisco, Calif.
W.F. Crowley, Boston, Mass.
K. Döhler, Wedemark, FRG
H.H. Feder, Newark, N.J.
M. Ferin, New York, N.Y.
J.W. Funder, Melbourne
H. Gainer, Bethesda, Md.
R.R. Gala, Detroit, Mich.
R.V. Gallo, Storrs, Conn.
PC. Goldsmith, San Francisco, Calif.
G.A. Gudelsky, Cleveland, Ohio
S.P. Kaira, Gainesville, Fla.
Y. Kato, Izumo
F. Kimura, Yokohama
S.W.J. Lamberts, Rotterdam
D. Lincoln, Edinburgh
P.J. Lowry, Reading
R.M. MacLeod, Charlottesville, Va.
G.B. Makara, Budapest
F. Mena, Mexico City
K.E. Moore, East Lansing, Mich.
C. Oliver, Marseille
C. Rivier, San Diego, Calif.
J.L. Roberts, New York, N.Y.
D.K. Sarkar, La Jolla, Calif.
P. Smelik, Amsterdam
S.L. Wardlaw, New York, N.Y.
Drug Dosage

The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Immunoreactive Dynorphin Is Regulated by Estrogen in the Rat Anterior Pituitary
Fullerton, M.J.; Smith, A.I.; Funder, J.W

Leu-Phe Cleaving Endopeptidase Activity, \(\gamma \)-Endorphin, and \(\beta \)-Endorphin in the Rat Pituitary Gland and Brain. Effect of Adrenalectomy and Corticosterone Substitution
Lebouille, J.L.M.; Burbach, J.P.H.; De Kloet, E.R.; Wiegant, V.M.; Sweep, C.G.J.; De Wied, D

Preoptic-Hypothalamic Pathways Controlling Nocturnal Prolactin Surges, Pseudopregnancy, and Estrous Cyclicity in the Rat
Jakubowski, M; Dow, R.C.; Fink, G

Effect of Electrical Stimulation of the Ventromedial Nucleus and the Dorsomedial Nucleus on the Activity of Tubero-infundibular Dopaminergic Neurons
Gunnet, J.W.; Moore, K.E

Vasoactive Intestinal Peptide Gene Expression from Embryos to Aging Rats
Gozes, I.; Schächter, P.; Shani, Y.; Giladi, E

Influence of Calcium Ions on Proopiomelanocortin mRNA Levels in Clonal Anterior Pituitary Cells
von Dreden, G; Loeffler, J.-P.; Grimm, C; Höllt, V

Transient Removal of Dopamine Potentiates the Stimulation of Prolactin Release by TRH but Not VIP: Stimulation via Ca\(^{2+}\)/Protein Kinase C Pathway
Martinez de la Escalera, G.; Guthrie, J.; Weiner, R.I.

Depending on the Time of Administration, Dexamethasone Potentiates or Blocks Growth Hormone-Releasing Hormone-Induced Growth Hormone Release in Man

Stimulated Release of Immunoreactive Adrenocorticotropin and \(\beta \)-Endorphin from Extrahypothalamic Brain
Kapcala, L.P

Swimming Depresses Nighttime Melatonin Content without Changing N-Acetyltransferase Activity in the Rat Pineal Gland
Troiani, M.E.; Reiter, R.J.; Vaughan, M.K.; Oaknin, S.; Vaughan, G.M

Influences of Photoperiod on Nuclear Androgen Receptor Occupancy in Neuroendocrine Tissues of the Golden Hamster
Bittman, E.L.; Krey, L.C
Histaminergic Mediation of the Stress-Induced Release of Prolactin in Male Rats
Knigge, U.; Matzen, S.; Warberg, J 68

Ether Stress Stimulates Noradrenaline Release in the Hypothalamic Paraventricular Nucleus
Mermet, C.C.; Gonon, F.G 75

Activation of 5-HT 1 Serotonin Receptors in the Medial Basal Hypothalamus Stimulates Prolactin Secretion in the Unanesthetized Rat
Willoughby, J.O.; Menadue, M.F.; Liebelt, HJ 83

Acknowledgements 88

Original Paper

Effect of Chronic Morphine on Plasma and Brain Beta Endorphin and Methionine Enkephalin in Pregnant Rats and in Their Fetuses or Newborn
Bianchi, M.; Marini, A.; Sacerdote, P.; Cocco, E.; Brini, A.; Panerai, A.E 89

Dopamine Inhibition of Proopiomelanocortin Gene Expression in the Intermediate Lobe of the Pituitary. Interactions with Corticotropin-Releasing Factor and the Beta-Adrenergic Receptors and the Adenylate Cyclase System Loeffler, J.-P.; Demeneix, B.A.; Kley, N.A.; Höllt, V. . . 95

N-Tosyl-L-Phenylalanine Chloromethyl Ketone Inhibits LHRH-Degrading Activity and Increases in vitro LHRH Release from the Immature Rat Median Eminence Advis, J.P.; Contijoch, A.M.; Urbanski, H.F.; Ojeda, S.R. 102

Antiglucocorticoid RU 38486 Attenuates Retention of a Behaviour and Disinhibits the Hypothalamic-Pituitary Adrenal Axis at Different Brain Sites De Kloet, E.R.; De Kock, S.; Schild, V.; Veldhuis, H.D. . 109

Effect of Testosterone on Growth Hormone Secretion in Female Rats during a Continuous Infusion of Growth Hormone Releasing Factor
Akira, S.; Wakabayashi, I.; Sugihara, H.; Minami, S.; Takahashi, F.; Motoyama, A 116
Contents

Immunocytochemical and Biochemical Characterization of Angiotensin I and II in Cultured Neuronal and Glial Cells from Rat Brain
Hermann, K.; Raizada, M.K.; Sumners, C; Phillips, M.I. 125

Plasma Prolactin and Luteinizing Hormone Profiles during the Estrous Cycle of the Female Rat: Effects of Surgically Induced Persistent Estrus
Ronnekleiv, O.K.; Kelly, M.J 133

Characterization of Neurophysin in the Anterior Pituitary Gland of Sheep
Watkins, W.B.; Moore, L.G.; Spiess, J 142

Biphasic Changes in Anterior Pituitary Met-Enkephalin Concentration following Reserpine Treatment
George, S.R.; Kertesz, M 149

Bovine ‘Neurophysin II’ Stimulates Growth Hormone Release in the Estradiol-Primed Male Rat
Papas, S.; Shin, S.H.; Obonsawin, M.C 154

Chronic Bromocriptine Administration Restores Luteinizing Hormone Response to Naloxone in Postmenopausal Women
Melis, G.B.; Cagnacci, A.; Gambacciani, M.; Paoletti, A.M.; Caffi, T.; Fioretti, P 159

Effect of Androgens on Hypothalamic Pro-Opiomelanocortin
Wardlaw, S.L 164

The Protein Kinase C Activator l-Oleoyl-2-Acetylglycerol Inhibits Voltage-Dependent Ca2+ Current in the Pituitary Cell Line AtT-20
Lewis, D.L.; Weight, F.F 169

Rapid Communication

Major Pro-Vasopressin-Expressing and Pro-Vasopressin-Deficient Subpopulations of Corticotropin-Releasing Hormone Neurons in Normal Rats
Whitnall, M.H.; Gainer, H 176
Effects of Colchicine on the Hypothalamo-Neurohypophysial System of Chronically Salt-Loaded Rats
Peña, P.; Rodriguez, E.M.; Dellmann, H.-D.; Schoebitz, K. 217
Estrous Cycle Variations in Levels of Cholecystokinin Immunoreactivity within Cells of Three Interconnected Sexually Dimorphic Forebrain Nuclei. Evidence for a Regulatory Role for Estrogen
Oró, A.E.; Simerly, R.B.; Swanson, L.W 225
Effects of Bromocriptine and Ectopic Pituitary Transplants on Pituitary and Hypothalamic Nuclear Androgen Receptors in the Male Hamster
Prins, G.S.; Bartke, A.; Chandrashekar, V.; Reiher, J.; Hodges, S.; Meyers, R 236
Beta Endorphin and Dynorphin Levels in Rat Pituitary and Hypothalamus: Age Studies
Dax, E.M.; Reichman, C; Fullerton, M.; Wallace, C; Smith, A.I.; Funder, J.W 241
Absence of Steroid-Dependent, Endogenous Opioid Peptide Suppression of Pulsatile Luteinizing Hormone Release between Diestrus 1 and Diestrus 2 in the Rat Estrous Cycle
Babu, G.N.; Marco, J.; Bona-Gallo, A.; Gallo, R.V. ... 249
High-Resolution Radioautographic Localization of Beta-Adrenergic Receptors in the Pars intermedia of the Rabbit Pituitary
Schimchowitsch, S.; Pelletier, G 259
Evidence that the Pituitary-Adrenal Axis Does Not Cross-Adapt to Stressors: Comparison to Other Physiological Variables
Armario, A.; Hidalgo, J.; Giralt, M 263
Rapid Communication
Evidence for a Dopaminergic Mechanism for the Prolactin Inhibitory Effect of Atrial Natriuretic Factor
Samson, W.K.; Bianchi, R.; Mogg, R 268
Announcement 272
No. 3
Original Paper
Endogenous Opioids and Thyroid-Stimulating Hormone Secretion in Azotemic Male Rats
Elias, A.N.; Vaziri, N.D.; Pandian, M.R.; Iyer, K; Ansari, M.A 181
Mechanism(s) by which the Transient Removal of Dopamine Regulation Potentiates the Prolactin-Releasing Action of Thyrotropin-Releasing Hormone
Martinez de la Escalera, G.; Weiner, R.I 186
Effect of Specific Acute Stressors on Luteinizing Hormone Release in Ovariectomized and Ovariectomized Estrogen-Treated Female Rats
Briski, K.P.; Sylvester, P.W 194
Infundibular Gonadotropin-Releasing Hormone Neurons Are Inhibited by Direct Opioid and Autoregulatory Synapses in Juvenile Monkeys
Thind, K.K.; Goldsmith, P.C 203
Original Paper
Central Serotonergic Stimulation by Fenfluramine Challenge Does Not Affect Plasma Thyrotropin-Stimulating Hormone Levels in Man
Coccaro, E.F.; Siever, L.J.; Kourides, L.A.; Adan, F.; Campbell, G.; Davis, K.L 273
Neuropharmacological Characterization of Serotonergic Stimulation of Vasopressin Secretion in Conscious Rats
Brownfield, M.S.; Greathouse, J.; Lorens, S.A.; Armstrong, J.; Urban, J.H.; Van de Kar, L.D 277
Distribution of Immunoreactive Prolactin in the Male and Female Rat Brain: Effects of Hypophysectomy and Intraventricular Administration of Colchicine
DeVito, W.J 284
Water Deprivation Changes Naloxone Binding in the Rat Brain
Mori, M.; Ishihara, H.; Iriuchijima, T290
Plate I

Fig. 1. Immunofluorescence staining of thymic cells in the subcapsular cortex (a, b) and the medulla (c, d) with monoclonal A2B5 and anti-NP serum. Reticular networks, which might correspond to TNCs in situ, are delineated by A2B5 and NP immunoreactivities in the subcapsular cortex (a, b, arrows). One A2B5-positive cell is also identified in the outer cortex (a, asterisk). Double immunofluorescence analysis reveals a close correspondence between A2B5-positive and ir NP-containing cells in the medulla (c, d). Note the absence of staining in the deep cortex, partially seen in the upper left corner (c, d). 5-µm cryostat sections. × 400.

Neuroendocrinology, Vol. 47
Plate II

Fig. 2. The neuroendocrine TNCs.
Sequential double immunofluorescence stainings of isolated TNCs with monoclonal A2B5 (a, c) and polyclonal antisera against NP (b) and OT (d). The TNC-engulfed thymocytes are not labelled and appear as round shaded areas dispersed in the cytoplasm of TNCs. A2B5 mainly delineates the TNC outer and intercaveolar membrane, while NP and OT immuno-reactivities are more diffuse in TNC cytoplasm. Double exposure photograph of a group of TNCs immunostained with A2B5 and anti-AVP (e). Reactivity of one TNC with anti-NSE serum (f). 5-µm cryostat sections, a-d × 2,000; e, f × 1,000.

Fig. 3. Control experiments: absence of specific immunostaining of TNCs with normal rabbit serum as first-step antibody (a), and after preincubation of anti-OT with 5 × 10^{-6} M synthetic OT (b). Extinction of specific immunolabelling was also observed with normal mouse serum as first antibody, with anti-AVP preincubated with 5 × 10^{-6} M synthetic AVP, or with TRITC-conjugated second antibody. Note the need for an increase of the photographic exposure time as indicated by a clearer background. 5-µm cryostat sections, a × 400; b × 2,000.

Neuroendocrinology, Vol. 47
A2B5 + AVP
Contents
Inhibition of Hypothalamic and Pituitary Muscarinic Receptor Binding by Progesterone
Klangkalya, B.; Chan, A 294

Effect of Cholinergic Agonists and Antagonists on Rat Hypothalamic Corticotropin-Releasing Hormone Secretion in vitro
Calogero, A.E.; Gallucci, W.T.; Bernardini, R.; Saoutis, C; Gold, P.W.; Chrousos, G.P 303

Constant Light and Dark Affect the Circadian Rhythm of the Hypothalamic-Pituitary-Adrenal Axis
Fischman, A.J.; Kastin, A.J.; Graf, M.V.; Moldow, R.L. 309

Sequential Formation of Beta-Endorphin-Related Peptides in Porcine Pituitary
Smyth, D.G.; Darby, N.J.; Maruthainar, K 317

15-Lipoxygenase Products Stimulate Prolactin Secretion from a Cloned Strain of Rat Pituitary Cells
Rabier, M.; Chavis, C; Crastes de Paulet, A.; Damon, M. 323

Local Cerebral Glucose Utilization Is Increased in Acutely Adrenalectomized Rats
Kadekaro, M.; Ito, M.; Gross, P.M 329

Immunohistochemical Investigation of the Magnocellular Peptidergic Hypothalamo-Neurohypophysial System of the Rat Chronically Stimulated by Long-Term Administration of Hypertonic Saline
Dellmann, H.-D.; Rodriguez, E.M.; Peña, P.; Siegmund, I. 335

Transfer from Long to Short Days Reduces the Frequency of Pulsatile Luteinizing Hormone Release in Intact but Not in Castrated Male Golden Hamsters
Swann, J.M.; Turek, F.W 343

Stimulation of Pro-Opiomelanocortin Gene Expression by Glucocorticoids in the Denervated Rat Intermediate Pituitary Gland
Seger, M.A.; van Eekelen, J.A.M.; Kiss, J.Z.; Burbach, J.P.H.; de Kloet, E.R 350

Preferential Interaction of [35S]Cysteamine with Pituitary Secretory Granule Storage Forms of Prolactin
Lorenson, M.Y.; Jacobs, L.S 358

Rapid Communication
The Neurohormonal Thymic Microenvironment: Immunocytochemical Evidence that Thymic Nurse Cells Are Neuroendocrine Cells (with 2 color plates)
Geenen, V.; Defresne, M.-P.; Robert, F.; Legros, J.-J.; Franchimont, P.; Boniver, J 365

Errata 368

No.15

Original Paper
Growth Hormone Secretion Induced by Thyrotropin-Releasing Hormone in Adult Chickens: Evidence of Dose-Dependent Induction of either Refractoriness or Sensitization
Scanes, C.G.; Harvey, S 369

Ontogeny of Corticotropin-Releasing Factor and Arginine Vasopressin in the Rat
Rundle, S.E.; Funder, J.W 374
Differential Activity of Thymosin Peptides (Thymosin Fraction 5) on Plasma Thyrotropin in Female Rats of Different Ages
Goya, R.G.; Sosa, Y.E.; Quigley, K.L.; Gottschall, P.E.; Goldstein, A.L.; Meites, J 379

Immunocytochemical Delineation of Thyrotrophic Area: Origin of Thyrotropin-Releasing Hormone in the Median Eminence

Mechanisms of 5-Hydroxy-L-Tryptophan-Induced Adrenergic Hormone Release: A Major Role for Central Noradrenergic Drive
Smythe, G.A.; Gleeson, R.M.; Stead, B.M 389

Species-Specific Topography of Corticosteroid Receptor Types in Rat and Hamster Brain
Sutanto, W.; van Eekelen, J.A.M.; Reul, J.M.H.M.; de Kloet, E.R 398

Ultrastructural Evidence for Neuronal Regulation of Growth Hormone Secretion

The Anterior Hypothalamus Provides Stimulatory Input to Tubero-infundibular Dopamine Neurons Which Is Not Mediated by Prolactin
Barton, A.C.; Demarest, K.T.; Moore, K.E 416

An Appropriate Model for Congenital Hypothyroidism in the Rat Induced by Neonatal Treatment with Propylthiouracil and Surgical Thyroidectomy: Studies on Learning Ability and Biochemical Parameters
Kawada, J.; Mino, H.; Nishida, M.; Yoshimura, Y. ... 424

Growth Hormone Synthesis Decreased after Anterolateral Deafferentation of the Medial Basal Hypothalamus in the Rat
Ieiri, T.; Ishikawa, K.; Suzuki, M.; Shimoda, S.-1 431

Metabolic Mapping of Functional Activity in the Olfactory System of Normal and Hypogonadal (hpg) Mice
McQueen, J.K.; Martin, M.J.; Fink, G 437

Maintenance of Estrous Cycle in Female Rats with Anterior or Posterior Deafferentation of the Suprachiasmatic Nucleus
Nomura, K.; Takahashi, S.; Kawashima, S 444

Hypothalamic Serotonin Lesions Unmask Hormone Responsiveness of Lordosis Behavior in Adult Male Rats
Morenes, J.; Kelton, M.; Luine, V.N.; Pfaff, D.W.; McEwen, B.S 453

Age-Related Changes in Growth Hormone Releasing Factor and Somatostatin in the Rat Hypothalamus

Rapid Communications
Z-L-2-Amino-5-Phosphono-pentanoic Acid, a Specific N-Methyl-L-Aspartic Acid Receptor Antagonist, Suppresses Pulsa
tile LH Release in the Rat
Arslan, M.; Pohl, C.R.; Plant, T.M 465

Colocalization of GHRF and NPY Immunoreactivities in Neurons of the Infundibular Area of the Human Brain
Ciofi, P.; Croix, D.; Tramu, G 469

Announcement 468
Contents

No. 6
Original Paper
Regional Specificity of Gamma-Aminobutyric Acid Receptor Regulation by Estradiol
O’Connor, L.H.; Nock, B.; McEwen, B.S 473
Growth Hormone Releasing Hormone Induced Release of Growth Hormone in Aging Male Rats: Dependence on Pharmacological Manipulation and Endogenous Somatostatin Release
Sonntag, W.E.; Gough, M.A 482
Systemic Angiotensin Acts at the Subfornical Organ to Control the Activity of Paraventricular Nucleus Neurons with Identified Projections to the Median Eminence
Ferguson, A.V 489
Hypothalamic Action of Delta-9-Tetrahydrocannabinol to Inhibit the Release of Prolactin and Growth Hormone in the Rat
Rettori, V.; Wenger, T.; Snyder, G.; Dalterio, S.; McCann, S.M 498
Naloxone Stimulation of in vivo LHRH Release Is Not Diminished following Ovariectomy
Karahalios, D.G.; Levine, J.E 504
Evidence for a Direct Action of Neuropeptide Y in the Rat Pituitary Gland
Chabot, J.-G.; Enjalbert, A.; Pelletier, G.; Dubois, P.M.; Morel, G 511
Relation of the Ventromedial Nuclei of the Hypothalamus to the Regulation of Renin Secretion
Gotoh, E.; Golin, R.M.A.; Ganong, W.F 518
Relationship of Alpha-1- and Alpha-2-Adrenergic-Binding Sites to Regions of the Paraventricular Nucleus of the Hypothalamus Containing Corticotropin-Releasing Factor and Vasopressin Neurons
Cummings, S.; Seybold, V 523
Autoradiographic Study of Somatostatin Receptors in the Rat Hypothalamus: Validation of a GTP-Induced Desaturation Procedure
Leroux, P.; Gonzalez, B.J.; Laquerrière, A.; Bodenant, C; Vaudry, H. 533
Concomitant Changes in the in vitro and in vivo Release of Opioid Peptides and Luteinizing Hormone-Releasing Hormone from the Hypothalamus following Blockade of Receptors for Corticotropin-Releasing Factor
Nikolarakis, K.E.; Almeida, O.F.X.; Sirinathsinghji, D.J.S.; Herz, A 545
Changes in Local Cerebral Glucose Utilization Associated with the Spontaneous Ovulatory Surge of Luteinizing Hormone in the Rat
McQueen, J.K.; Fink, G 551
Somatostatin-28 Effects on Central Nervous System Regulation of Vasopressin Secretion and Blood Pressure
Brown, M.R 556
Luteinizing Hormone-β mRNA Levels Are Regulated Primarily by Gonadotropin-Releasing Hormone and Not by Negative Estrogen Feedback on the Pituitary
Mercer, J.E.; Clements, J.A.; Funder, J.W.; Clarke, I.J. . 563
Vasoactive Intestinal Peptide Treatment that Increases Thyroid Blood Flow Fails to Alter Plasma T3 or T4 Levels in the Rat
Huffman, L.J.; Connors, J.M.; White, B.H.; Hedge, G.A. 567
Neurohypophysial Peptides in Guinea Pig Hypophysial Portal Blood: Equimolar Release of the Carboxyl Terminal Gly-copeptide with Arginine Vasopressin
Robinson, I.C.A.F.; Fairhall, K.M.; Dow, R.C.; Fink, G. . 575
Announcement 581
Author Index 582
Subject Index 584