Contents Vol. 58, 1993

Editor-in-Chief
C. Kordon, Paris

Editors
A. Enjalbert, Marseille
P. Kelly, Paris
R. Weiner, San Francisco, Calif.

Full addresses of Editorial Board members may be obtained from the office of the Editor-in-Chief.

Contents Vol. 58, 1993

No. 1
Editorial 1
Kordon, C.

Original Paper
Downregulation of Protein Kinase C Levels Leads to Inhibition of GnRH-Stimulated Gonadotropin Secretion from Dispersed Pituitary Cells of Goldfish 2
Jobin, R.M.; Ginsberg, J.; Matowe, W.C.; Chang, J.P.

Preoptic Release of Amino Acid Neurotransmitters Evaluated in Peripubertal and Young Adult Female Rats by Push-Pull Perfusion 11
Goroll, D.; Arias, P.; Wuttke, W.

Sex and Estrous Cycle Variations of Rat Striatal Dopamine Uptake Sites Morissette, M.; Dj Paolol, T. 16

A Possible Role of Neuropeptide Y in the Control of the Onset of Puberty in Female Rhesus Monkeys Gore, A.C.; Mitsushima, D.; Terasawa, E.
Ovarian Involvement in the Suppression of Luteinizing Hormone in the Incubating Turkey (Meleagris gallopavo) El Halawani, M.E.; Slaby, J.L.; Foster, L.K., Rozenboim, I.; Foster, D.N. 35

Contrasting Effects of Central Alpha-1-Adrenoceptor Activation on Stress-Responsive and Stress-Nonresponsive Subpopulations of Corticotropin-Releasing Hormone Neurosecretory Cells in the Rat Whitnall, M.H.; Kiss, A.; Aguiler, G. 42

Glucocorticoid Feedback Regulation of Adrenocortical Function 49
Weidenfeld, J.; Feldman, S.

Investigation of the Role of 5-HT3 Receptors in the Secretion of Prolactin, ACTH and Renin Levy, A.D.; Li, Q.; Rittenhouse, P.A.; Van de Kar, L.D.

Gene Expression of KA Type and NMDA Receptors and of a 77 Glycine Transporter in the Rat Pineal Gland Sato, K.; Kiyama, H.; Shimada, S.; Tohyama, M.
Dual Action GABA Receptors on the Secretory Process of Melanotrophs of *Xenopus laevis*

Jenks, B.G.; de Koning, H.P.; Valentinj, K.; Roubos, E.W.

Expression of Neuroendocrine Secretory Protein 7B2 mRNA in the Mouse and Rat Pituitary Gland Marcinkiewicz, M.; Touraine, P.; Mbikay, M.; Chretien, M.

Increased Arginine Vasopressin Secrecy May Participate in the Enhanced Susceptibility of Lewis Rats to Inflammatory Disease Patchev, V.K.; Mastorakos, G.; Brady, L.S.; Redwine, J.; Wilder, R.L.; Chrousos, G.P.

Direct Anterior Pituitary Modulation of Gonadotropin Secretion by Neuropeptide Y: Role of Gonadal Steroids O’Conner, J.L.; Wade, M.F.; Brann, D.W.; Mahesh, V.B.

Chronic Administration of Muscimol and Pentobarbital Decreases Gonadotropin-Releasing Hormone mRNA Levels in the Male Rat Hypothalamus Determined by Quantitative in situ Hybridization Li, S.; Pelletier, G.

Suckling and Cold Stress Rapidly and Transiently Increase TRH mRNA in the Paraventricular Nucleus Uribe, R.M.; Redondo, J.L.; Charli, J.-L.; Joseph-Bravo, P.

Inhibitory Effect of a Highly Potent Antagonist of LH Releasing Hormone (SB-75) on the Pituitary Gonadal Axis in the Intact and Castrated Rat

Ayalon, D.; Farhi, Y.; Comaru-Schally, A.M.; Schally, A.V.; Eckstein, N.; Vagman, I.; Limor, R.

Presence and Differential Distribution of Distinct Forms of Immunoreactive Gonadotropin-Releasing Hormone in the Musk Shrew Brain Dellovade, T.L.; King, J.A.; Millar, R.P.; Russian, E.F.

Serum and Plasma Somatostatin-Labeled Cells in the Anterior Arcuate Nucleus Mediate Somatostatin Effects on Growth Hormone but Not Prolactin Secretion Slama, A.; Bluet-Pajot, M.T.; Mounier, F.; Videau, C.; Kordon, C.; Epelbaum, J.

The Influence of Interleukin-2 on the Release of Somatostatin and Growth Hormone-Releasing Hormone by Medial basal Hypothalamus Karanth, S.; Aguila, M.C.; McCann, S.M.

Alpha-Melanocyte-Stimulating Hormone Abolishes IL-1β- and IL-6-Induced Corticotropin-Releasing Factor Release from the Hypothalamus in vitro Lyson, K.; McCann, S.M.

Passive Immunization and Hypothalamic Peptide Secretion in Strbák, V.; Guillaumou, V.; Grobo, M.; Dutour, A.; Burlet, A.J.; Oliver, C.

Interaction of Oestradiol, α-Melanotrophin and Noradrenaline within the Ventromedial Nucleus in the Control of Female Sexual Behaviour Gonzalez, M.I.; Celis, M.E.; Hole, D.R.; Wilson, C.A.

Alpha-Melanocyte-Stimulating Hormone Is Present in the Inferior Petrosal Sinuses in Patients with Cushing’s Disease Colao, A.; Merola, B.; Cataldi, M.; La Tessa, G.; Boudouresque, F.; Oliver, C.; Di Renzo, G.; Annunziato, L.; Lombardi, G.

NMDA Receptor Antagonist Decreases the Progesterone-Induced Increase in GnRH Gene Expression in the Rat Hypothalamus
Preferential Distribution of C-Terminal Fragments of [Hydroxyproline]LHRH in the Rat Hippocampus and Olfactory Bulb
Gautron, J.-P.; Pattou, E.; Leblanc, P.; L’Héritier, A.; Kordon, C.

GnRH-Associated Peptide Decreases Cyclic AMP Accumulation in the GTP Pituitary Cell Line
Van Chuo’i, M.T.; Vacher, P.; Dufy, B.

Isotonic but Not Hypertonic Ethanol Stimulates LHRH Secretion from Perifused Rat Median Eminence
Inukai, T.; Wang, X.; Greer, M.A.; Greer, S.E.

Chronobiology of Prolactin Secretion in Women: Diurnal and Sleep-Related Variations in the Pituitary Lactotroph Sensitivity
Rossmanith, W.G.; Boscher, S.; Ulrich, U.; Benz, R.

Announcement

No. 2

Original Paper

Restoration by Bromocriptine of Glucocorticoid Receptors and Glucocorticoid Negative Feedback on Prolactin Secretion in Estrogen-Induced Pituitary Tumors
Piroli, G.; Grillo, C.; Ferrini, M.; Díaz-Torga, G.; Rey, E.; Libertun, C.; De Nicola, A.F.

Acute Effects of D9-Tetrahydrocannabinol on Tuberoinfundibular Dopamine Activity, Anterior Pituitary Sensitivity to Dopamine and Prolactin Release Vary as a Function of Estrous Cycle
Bonnin, A.; Ramos, J.A.; Rodriguez de Fonseca, F.; Cebeira, M.; Fernandez-Ruiz, J.J.

Neurochemical Evidence that the Inhibitory Effect of Galanin on Tuberoinfundibular Dopamine Neurons Is Activity Dependent
Gopalan, C.; Tian, Y.; Moore, K.E.; Lookingland, K.J.

Dopamine Regulation of Swim Stress Induction of the Pituitary Intermediate Lobe Proopiomelanocortin System
Young, E.A.; Bronstein, D.; Akil, A.

Dissociation of the Effect of Aminoglutethimide on Corticosterone Biosynthesis from Ataxic and Hypothermic Effects in DBA and C57 Mice
Roberts, A.J.; Gallacher, E.J.; Keith, L.D.

17ß-Estradiol and Progesterone Positively Modulate Spinal Cord Dynorphin: Relevance to the Analgesia of Pregnancy
Medina, V.M.; Dawson-Basoa, M.E.; Gintzler, A.R.

Sex and Regional Differences in Intracellular Localization of Estrogen Receptor Immunoreactivity in Adult Ferret Forebrain
Tobet, S.A.; Chickering, T.W.; Lee, Y.K.; Lee, C.C.; Kim, K.
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Growth Hormone and Thyroxine on Thymulin Secretion in Aging Rats</td>
<td>Goya, R.G.; Gagnerault, M.-C.; Sosa, Y.E.; Bevilacqua, J.A.; Dardenne, M.</td>
<td>339</td>
</tr>
<tr>
<td>Short- and Long-Term Effects of Perinatal Interleukin-1β Application in Rats</td>
<td>Götz, F.; Dörner, G.; Malz, U.; Rohde, W.; Stahl, F.; Poppe, I.; Schulze, M.; Plagemann, A.</td>
<td>344</td>
</tr>
<tr>
<td>Induction of FOS Immunoreactivity in Oxytocin Neurons after Sexual Activity in Female Rats</td>
<td>Flanagan, L.M.; Pfaus, J.G.; Pfaff, D.W.; McEwen, B.S.</td>
<td>352</td>
</tr>
<tr>
<td>Melatonin Receptors in the Lamina Pars tuberalis/Median Eminence throughout the Day throughout the Estrous Cycle in the Rat</td>
<td>Piketty, V.; Pelletier, J.</td>
<td>359</td>
</tr>
<tr>
<td>Binding Characteristics of Hypothalamic Mu Opioid Receptors throughout the Estrous Cycle in the Rat</td>
<td>Maggi, R.; Dondi, D.; Rovati, E.G.; Martini, L.; Piva, F.; Limonta, P.</td>
<td>366</td>
</tr>
<tr>
<td>Induction of FOS Immunoreactivity in Oxytocin Neurons after Sexual Activity in Female Rats</td>
<td>Götz, F.; Dörner, G.; Malz, U.; Rohde, W.; Stahl, F.; Poppe, I.; Schulze, M.; Plagemann, A.</td>
<td>344</td>
</tr>
<tr>
<td>Melatonin Receptors in the Lamina Pars tuberalis/Median Eminence throughout the Day throughout the Estrous Cycle in the Rat</td>
<td>Piketty, V.; Pelletier, J.</td>
<td>359</td>
</tr>
<tr>
<td>Binding Characteristics of Hypothalamic Mu Opioid Receptors throughout the Estrous Cycle in the Rat</td>
<td>Maggi, R.; Dondi, D.; Rovati, E.G.; Martini, L.; Piva, F.; Limonta, P.</td>
<td>366</td>
</tr>
</tbody>
</table>

Molecular Neuroendocrinology

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat and Mouse Proopiomelanocortin Gene Sequences Target Tissue-Specific Expression to the Pituitary Gland but not to the Hypothalamus of Transgenic Mice Rubinstein, M.; Mortrud, M.; Liu, B.; Low, M.J.</td>
<td>Rubinstein, M.; Mortrud, M.; Liu, B.; Low, M.J.</td>
<td>373</td>
</tr>
<tr>
<td>Expression of Vasopressin mRNA in Extrahypothalamic Nuclei of the Homozygous Brattleboro Rat Is Not Modulated by Testosterone Szot, P.; Dorsa, D.M.</td>
<td>Szot, P.; Dorsa, D.M.</td>
<td>381</td>
</tr>
<tr>
<td>Dopamine Transporter mRNA in Neurons of the Rat Hypothalamus Meister, B.; Elde, R.</td>
<td>Meister, B.; Elde, R.</td>
<td>388</td>
</tr>
</tbody>
</table>
Hypothalamic Adrenal Axis
Lesions of the Hippocampal Efferent Pathway (Fimbria-For-396 nix) Do Not Alter Sensitivity of Adrenocorticotropin to Feedback Inhibition by Corticosterone in Rats Bradbury, M.J.; Strack, A.M.; Dallman, M.F.
Effects of Discrete Lesions in the Ventral Noradrenergic
Ascending Bundle on the Corticotropic Stress Response Depend on the Site of the Lesion and on the Plasma Levels of Adrenal Steroids Gaillet, S.; Alonso, G.; Le Borgne, R.; Barbanel, G.; Malaval, F.; Assenmacher, I.; Szafarczyk, A.
Augmented ACTH Responses to Stress in Adrenalectomized Rats Replaced with Constant Physiological Levels of Corticosterone Are Partially Normalized by Acute Increases in Corticosterone Jacobson, L.; Sapolsky, R.
Lipocortin I Mediates an Early Inhibitory Action Glucocorticoids on the Secretion of ACTH by the Rat Anterior Pituitary Gland in Vitro Taylor, A.; Cowell, A.-M.; Flower, J.; Buckingham, J.C.
Immunocytochemical Localization of Dopamine-Releasing Protein in the Rat Adrenal Choi, W.S.; Kim, M.-O.; Ramirez, V.D.

Hypothalamic Gonadal Axis
Graded Hyperprolactinemia First Suppresses LH Pulse Fre-448 quency and Then Pulse Amplitude in Castrated Male Rats Park, S.-K.; Keenan, M.W.; Selmanto, M.
Altered Luteinizing Hormone and Prolactin Responses to Excitatory Amino Acids during Lactation Abbud, R.; Smith, M.S.
Clinical Neuroendoocrinology
Modulation by Glucocorticoids of Growth Hormone Secretion 465 in Patients with Different Pituitary Tumors Popovic, V.; Damjanovic, S.; Micic, D.; Manojlovic, D.; Micic, J.; Casanueva, F.F.
Effect of Hypersomatostatinemia on Growth Hormone Secretion in Cystic Fibrosis Patients with Diabetes Culler, F.L.; Meacham, L.R.
Anxiolytic Metabolites of Progesterone: Correlation with Mood and Performance Measures following Oral Progesterone Administration to Healthy Female Volunteers Freeman, E.W.; Purdy, R.H.; Coutifaris, C.; Rickels, K.; Paul, S.M.
Announcements 447

IV
No. 5

Regulation of Hypothalamic Neurons

Immortalized Hypothalamic Luteinizing Hormone-Releasing 485 Hormone Neurons Express a Connexin 26-like Protein and Display Functional Gap Junction Coupling Assayed by Fluorescence Recovery after Photobleaching Matesic, D.F.; Germak, J.A.; Dupont, E.; Madhukar, B.V.

Expression in the Hypothalamus Matera, C; Wardlaw, S.L.

Dopamine and Sex Steroid Regulation of POMC Gene 493

Expression in the Hypothalamus Matesic, D.F.; Wardlaw, S.L.

Progesterone Reverses the Estradiol-Induced Decrease in Tyrosine Hydroxylase mRNA Levels in the Arcuate Nucleus Arboqast, L.A.; Voogt, J.L.

Episodic Gonadotropin-Releasing Hormone Release from the Rat Isolated Median Eminence in vitro Rasmussen, D.D.

GABA-A Agonist Muscimol Inhibits Stimulated Vasopressin Release in the Posterior Pituitary of Sprague-Dawley, Wistar, Wistar-Kyoto and Spontaneously Hypertensive Rats Magnusson, A.M.; Meyerson, B.J.

Hypothalamic Gonadal Axis

Effect of Progesterone on Galanin mRNA Levels in the Hypothalamus and the Pituitary: Correlation with the Gonadotropin Surge Brann, D.W.; Chorich, L.P.; Mahesh, V.B.

Effects of Hypophysectomy on Galaninergic Neurons in the 539 Rat Hypothalamus

Selvais, P.L.; Colin, I.M.; Adam, E.; Kasa-Vubu, J.Z.; Denef, J.-F.; Maiter, D.M.

Castration Effects on the Gonadotrope Cell Populations of the 548 Fetal Sheep Pituitary in Late Gestation

Hadj Messaoud-Toumi, L.; Taragnat, C; Durand, P.

Hypothalamic Adrenal Axis

Immunocytochemical Localization of the Neuropeptide-Synthesizing Enzyme PCI in AtT-20 Cells

Hornby, P.J.; Rosenthal, S.D.; Mathis, J.P.; Vindrola, O.; Lindberg, I.

Effect of Gestational Age, CRF and Cortisol on ACTH Secretion from Slices of Fetal Sheep Pituitaries in an in vitro Perifusion System McMillen, I.C.; Mere, J.J.

Antimineralocorticoid Canrenoate Enhances Secretory Activity 570 of the Hypothalamus-Pituitary-Adrenocortical (HPA) Axis in Humans

Dodt, C; Kern, W.; Fehm, H.L.; Born, J.
Steroid Hormone Effects on NMDA Receptor Binding and NMDA Receptor mRNA Levels in the Hypothalamus and Cerebral Cortex of the Adult Rat Brann, D.W.; Zamorano, P.L.; Chorich, L.P.; Mahesh, V.B.

Sex-Specific Aromatization of Testosterone in Mouse Hypothalamic Neurons
Beyer, C; Wozniak, A.; Hutchison, J.B.

Anatomical Distribution of Prolactin-Like Immunoreactivity in the Rat Brain
Neuroendocrine Control of Peripheral Functions
Brain Atrial Natriuretic Peptide Neurons Play an Essential Role in Volume Expansion-Induced Release of Atrial Natriuretic Peptide and Natriuresis
Antunes-Rodrigues, J.; Picanco-Diniz, D.W.L.; Favaretto, A.L.V.; Gutkowska, J.; McCann, S.M.
Possible Role of Endothelin Acting within the Hypothalamus to Induce the Release of Atrial Natriuretic Peptide and Natriuresis
Antunes-Rodrigues, J.; Ramalho, M.J.; Reis, L.C.; Picanco-Diniz, D.W.L.; Favaretto, A.L.V.; Gutkowska, J.; McCann, S.M.
Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.