Vital Dyes in Vitreoretinal Surgery
Developments in Ophthalmology
Vol. 42

Series Editor
W. Behrens-Baumann Magdeburg
Vital Dyes in Vitreoretinal Surgery

Chromovitrectomy

Volume Editor

Carsten H. Meyer Bonn

69 figures, 47 in color, and 11 tables, 2008
Vital dyes in vitreoretinal surgery : chromovitrectomy/volume editor,
Carsten H. Meyer

Includes bibliographical references and indexes.
1. Vitreous body--Surgery. 2. Vitrectomy. 3. Retina--Diseases. 4. Dyes and dyeing--Therapeutic use. I. Meyer, Carsten H. II. Title:
Chromovitrectomy. III. Series.
v836 2008]
RES01. v56 2008
617.7’46–dc22
2008014732

Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents®

Disclaimer. The statements, options and data contained in this publication are solely those of the individual authors and contributors and not of the publisher and the editor(s). The appearance of advertisements in the book is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 2008 by S. Karger AG, P.O. Box, CH–4009 Basel (Switzerland)
www.karger.com
Printed in Switzerland on acid-free and non-aging paper (ISO 9706) by Reinhardt Druck, Basel
ISSN 0250–3751
Contents

VII List of Contributors
XI Preface
Meyer, C.H. (Bonn)

1 A Vitrectomy Is Done, When the Vitreous Is Gone! A Tribute to Prof. Peter Kroll
Meyer, C.H. (Bonn)

5 To See the Invisible: The Quest of Imaging Vitreous
Sebag, J. (Los Angeles, Calif.)

29 Historical Aspects and Evolution of the Application of Vital Dyes in Vitreoretinal Surgery and Chromovitrectomy
Rodrigues, E.B.; Penha, F.M.; Furlani, B. (Sao Paulo); Meyer, C.H. (Bonn); Maia, M.; Farah, M.E. (Sao Paulo)

35 Three Simple Approaches to Visualize the Transparent Vitreous Cortex during Vitreoretinal Surgery

43 Safety Parameters for Indocyanine Green in Vitreoretinal Surgery
Grisanti, S. (Tübingen, Luebeck); Altvater, A. (Tübingen); Peters, S. (Tübingen, Luebeck)

69 Toxicity of Indocyanine Green in Vitreoretinal Surgery
Gandorfer, A.; Haritoglou, C.; Kampik, A. (Munich)

82 Biomechanical Changes of the Internal Limiting Membrane after Indocyanine Green Staining
Wollensak, G. (Berlin)

91 Current Concepts of Trypan Blue in Chromovitrectomy
101 Trityl Dyes Patent Blue V and Brilliant Blue G – Clinical Relevance and in vitro Analysis of the Function of the Outer Blood-Retinal Barrier
Mennel, S. (Marburg); Meyer, C.H. (Bonn); Schmidt, J.C. (Marburg); Kaempf, S.; Thumann, G. (Aachen)

115 Brilliant Blue in Vitreoretinal Surgery
Enaida, H.; Ishibashi, T. (Fukuoka)

126 Vital Staining and Retinal Detachment Surgery
Jackson, T.L. (London)

141 An Experimental Approach towards Novel Dyes for Intraocular Surgery
Haritoglou, C.; Schüttauf, F.; Gandorfer, A.; Thaler, S. (Munich/Tübingen)

153 Experimental Evaluation of Microplasmin – An Alternative to Vital Dyes
Gandorfer, A. (Munich)

160 Author Index
161 Subject Index
List of Contributors

Andreas Altvater
University Eye Hospital
Center for Ophthalmology
Eberhard-Karls-University of Tübingen
Schleichstrasse 12–15
DE–72076 Tübingen (Germany)

Juliana Bottós
Federal University of Sao Paulo
Vision Institute
Department of Ophthalmology
Sao Paulo (Brazil)

Jack Chofflet
92, Chemin St. Christophe
FR-06130 Grasse (France)

Elaine F. Costa
Federal University of Sao Paulo
Vision Institute,
Department of Ophthalmology
Sao Paulo (Brazil)

Hirososhi Enaida
Department of Ophthalmology
Clinical Research Institute
National Hospital Organization
Kyushu Medical Center
1-8-1 Jigyohama, Chuo-ku
Fukuoka, 801-8563 (Japan)

Michel E. Farah
Federal University of Sao Paulo
Vision Institute
Department of Ophthalmology
Sao Paulo (Brazil)

Bruno Furlani
Federal University of Sao Paulo
Vision Institute
Department of Ophthalmology
Sao Paulo (Brazil)

Arnd Gandorfer
Department of Ophthalmology
Ludwig-Maximilians-University
Mathildenstrasse 8
DE–80336 Munich (Germany)
Salvatore Grisanti
Department of Ophthalmology
Universitätsklinikum Schleswig-Holstein
Campus Luebeck
Ratzeburger Allee 160
DE–23538 Luebeck (Germany)

Christos Haritoglou
Department of Ophthalmology
Ludwig-Maximilians-University
Mathildenstrasse 8
DE–80336 Munich (Germany)

Steffen Hörle
Department of Ophthalmology
Philipps-University Marburg
Robert-Koch-Strasse 4
DE–35037 Marburg (Germany)

Tatsuro Ishibashi, MD
Department of Ophthalmology
Graduate School of Medical Sciences
Kyushu University
3–1–1 Maidashi, Higashi-ku
Fukuoka, 812–8582 (Japan)

Timothy L. Jackson
Department of Ophthalmology
King's College Hospital
London SE5 9RS (UK)

Stefanie Kaempf
IZKF ‘Biomat’
Department of Ophthalmology
Rheinisch-Westfälische Technische Hochschule Aachen
Pauwelstrasse 30
52074 Aachen (Germany)

Anselm Kampik
Department of Ophthalmology
Ludwig-Maximilians-University
Mathildenstrasse 8
DE–80336 Munich (Germany)

Veronica Lima
Federal University of Sao Paulo
Vision Institute
Department of Ophthalmology
Sao Paulo (Brazil)

Mauricio Maia
Federal University of Sao Paulo
Vision Institute
Department of Ophthalmology
Sao Paulo (Brazil)

Stefan Mennel
Department of Ophthalmology
Philipps-University Marburg
Robert-Koch-Strasse 4
DE–35037 Marburg (Germany)

Carsten H. Meyer
Department of Ophthalmology
University of Bonn
Ernst-Abbe-Strasse 2
DE–53127 Bonn (Germany)

Fernando M. Penha
Federal University of Sao Paulo
Vision Institute
Department of Ophthalmology
Sao Paulo (Brazil)

Swaantje Peters
Department of Ophthalmology
Universitätsklinikum Schleswig-Holstein
Campus Luebeck
Ratzeburger Allee 160
DE–23538 Luebeck (Germany)
Eduardo B. Rodrigues, MD
Rua Presidente Coutinho 579
conj 501
Florianópolis
SC 88015–300 (Brazil)

Jörg C. Schmidt
Department of Ophthalmology
Philipps-University Marburg
Robert-Koch-Strasse 4
DE–35037 Marburg (Germany)

Frank Schüttauf
University Eye Hospital
Center for Ophthalmology
Eberhard-Karls-University of Tübingen
Schleichstrasse 12–15
DE–72076 Tübingen (Germany)

Jerry Sebag
VMR Institute
University of Southern California
7677 Center Avenue
Huntington Beach, CA 92647 (USA)

Sebastian Thaler
University Eye Hospital
Center for Ophthalmology
Eberhard-Karls-University of Tübingen
Schleichstrasse 12–15
DE–72076 Tübingen (Germany)

Gabi Thumann
Department of Ophthalmology
Rheinisch-Westfälische Technische Hochschule Aachen
Pauwelsstrasse 30
52074 Aachen (Germany)

Gregor Wollensak
Wildentensteig 4
DE–14195 Berlin (Germany)
Indocyanine green (ICG) has a high affinity to the internal limiting membrane (ILM) of the retina. However, its potential toxicity to the retina and unclear side effects opened a wide discussion on the benefit and complications of any vital dye in vitreoretinal surgery (chromovitrectomy). This book highlights the major clinical and experimental results with currently used novel vital dyes in modern vitreoretinal surgery. The first three chapters describe the transparent structure of the vitreous body and summarize historical considerations to visualize its structure by optical coherence tomography, dye injections or autologous cells during surgery for diagnostic purposes. The following three chapters describe the advantages and disadvantages of ICG during vitreoretinal surgery and experimental applications. Alternative approaches by recently approved vital dyes such as trypan blue, patent blue and brilliant blue are evaluated in the subsequent three chapters. The last three chapters give an outlook on novel vital dyes, which are currently under evaluation, as well as alternative enzymatic approaches to remove the vitreous from the retinal surface.

Chromovitrectomy is a novel approach to visualize the vitreous or retinal surface during vitreoretinal surgery. Numerous vital dyes have been applied in experimental settings with promising or devastating results. The widely used ICG has made the surgical maneuver of ILM peeling tremendously safer and efficient. However, its ‘off-label’ application and ongoing reports on possible side effects make the search for a safer approach necessary. Several alternative vital dyes have already been approved by the industry for vitreoretinal application, while additional dyes are still under evaluation. The authors would like to thank the international research community, governmental funding and private organizations as well as our industrial partners,
who have supported this ongoing research over the past decade. The future will show which dye allows the safest approach with possibly no side effects, a high specific affinity for the ILM or other vitreoretinal tissues and the best visual outcome for our patients.

The authors would like to thank the international research community, governmental funding and private organizations as well as our industrial partners (Geuder, Fluoron, Acritec/Zeiss) who have supported this ongoing research over the past decade.

Prof. Dr. med. Carsten H. Meyer,
Bonn