1283 del A: A Novel Mutation in Exon 8 of the Cystic Fibrosis Gene

T. Thierry Bienvenu
S. Sandrine Bousquet
S. Stanislas Lyonnet
J.-C. Jean-Claude Kaplan
C. Cherif Beldjord

aLaboratoire de Biochimie Génétique and INSERM U 129, CHU Cochin, bService de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France

Key Words
Cystic fibrosis
Denaturing gradient gel electrophoresis Chemical clamps
Frameshift mutation

Description of the Mutation
We report here a novel frameshift mutation in exon 8 of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene. The mutation is a 1-base (A) deletion at position 1283.

Source of Material
A couple of French origin with a history of 2 children with meconium ileus (born in 1956 and 1957, at a time when no information on sweat test, immunoreactive trypsin assay, or albumin meconium test was available) who died within months of birth was referred for genetic counselling for the benefit of a healthy daughter. Parental DNA samples were subjected to CFTR gene analysis. The mother was ΔF508 heterozygous. The father and his daughter were heterozygous for a new frameshift mutation in exon 8 of the CFTR gene. The two CF patients were probably compound heterozygous: ΔF508/1283 delA (fig. 1). DNA of these two patients was not collected forty years ago.

Method
In our screening strategy for mutations in the CFTR gene, we have developed conditions for denaturing gradient gel electrophoresis (DGGE) analysis. DGGE was performed using chemical clamps instead of a long GC sequence attached to the 5’ end of one of the primers. PCR was performed in a volume of 50 μl containing 50 mM Tris-HCl pH 8.3, 2.5 mM MgCl2, 1 mM of all four deoxynucleotides together, 0.5 mM each of the primers (upstream 8i5 5’ATTAATGC-TATTCTGATTCT3’ and downstream primer DG8Ì3 5’ psoralen-CAGTTAGGTGTATTAGGCAAC3’; Appligène Oncor), 2.5 U Taq polymerase (Perkin-Elmer Cetus) and 200 ng of genomic DNA. Samples were heated at 94°C for 7 min and at
55 °C for 1 min. Afterwards, forty cycles were performed with denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 30 s. DNA synthesis step at 72°C of the final cycle was extended to 5 min. The amplified DNA was irradiated for 10 min at room temperature using a UV source (365 nm) composed of two 6-watt lamps 1 cm above the sample (approximately 1 J/cm²). After irradiation, one fifth of the amplified product was loaded on a 6% polyacrylamide gel with a linearly increasing parallel gradient.

Fig. 1. Fluorescence sequence analysis of exon 8 of the CFTR gene. A Sequence of exon 8 of the CFTR gene from the subject showing one base deletion at position 1283. The arrow indicates the position of the mutation (heterozygous individual). B Wild-type sequence of exon 8 of the CFTR gene.

from 10 to 60% denaturant under 180 V 6.5 h [1]. PCR products were sequenced with Taq polymerase and Dye Terminators using protocols supplied by the manufacturer on an Applied Biosystems 377 DNA sequencer.

Frequency
This mutation was found once in 200 non-ΔF508 CF chromosomes from unrelated French CF patients and not at all in 100 normal chromosomes from parents and spouses of CF patients screened. In the French population, the identified mutations account for approximately 92% of all CF chromosomes [2].

Comments
Since the identification of the CFTR gene, more than 600 mutations have been reported to the Cystic Fibrosis Genetic Analysis Consortium in addition to the major mutation (ΔF508). Only one mutation in exon 8 has been published: W401X (G→A at 1335) [3]. In the analysis of exon 8 and flanking regions, we detected one sample with an abnormal DGGE migration pattern. Direct sequencing showed a deletion of A at position 1283 (fig. 1). The sequence alteration results in shifting of the reading frame, and introduces a stop codon (UAA) at position 387. This single-base deletion does not occur in a known restriction site.

Acknowledgments
We thank Claude Herbulot for technical assistance.

References


Novel Mutation in the CFTR Gene
Hum. Hered. 1997;47:173-175

175