T Cell Regulation in Allergy, Asthma and Atopic Skin Diseases
T Cell Regulation in Allergy, Asthma and Atopic Skin Diseases

Volume Editor

Kurt Blaser Davos

39 figures, 8 in color, and 11 tables, 2008
Contents

XI Preface
Role of T-Cell Subtypes in Allergic Inflammations
Blaser, K. (Davos)

1 Th17 and Treg Cells Innovate the Th1/Th2 Concept and Allergy Research
Schmidt-Weber, C.B. (London)

8 Regulatory T Cells and Antigen-Specific Tolerance

16 Molecular Mechanisms of Regulatory T-Cell Development
Chatila, T.A. (Los Angeles, Calif.)
67 Regulatory Effects of Histamine and Histamine Receptor Expression in Human Allergic Immune Responses
Akdis, C.A. (Davos); Jutel, M. (Wroclaw); Akdis, M. (Davos)

67 Abstract
68 Molecular Basis for Action
69 Histamine Receptors
69 Synthesis and Metabolism of Histamine
69 Histamine in Chronic Inflammatory Responses
70 Role of Histamine in the Regulation of Immune Response
70 Antigen-Presenting Cells
70 Effect of Histamine on T Cells and Antibody Isotypes
71 Role of Histamine and H1 Antihistamines during Allergen-SIT
71 Use of H1 Antihistamines in Asthma
72 Conclusions
72 Acknowledgments
73 References

83 T-Cell Regulation in Asthmatic Diseases
Finotto, S. (Mainz)

83 Abstract
84 New Molecular Target for Allergic Asthma
84 Interleukin-6 as a Bridge between Innate and Adaptive Immune Responses
85 Interaction of Th2 and T-Regulatory Cells
86 Do Th17 Cells Counteract T-Regulatory Cells in Allergic Asthma?
87 T-Bet Deficiency: Genetic and Epigenetic Control in Allergic Asthma
89 Glucocorticoid Receptor and T-Cell-Specific Transcription Factors
90 Conclusions
90 Acknowledgment
91 References

93 Immune Regulatory Mechanisms in Allergic Contact Dermatitis and Contact Sensitization
Cavani, A. (Rome)

93 Abstract
94 Contact Hypersensitivity and Animal Model of Tolerance to Haptens
95 T-Regulatory Cells in Contact Allergy
97 Dendritic Cells as Orchestrators of Skin Immune Responses to Haptens
98 Conclusions
98 References

101 Regulatory Role of T Lymphocytes in Atopic Dermatitis
Werfel, T.; Wittmann, M. (Hannover)

101 Abstract
102 Regulation of Atopic Dermatitis by T Cells – Clinical Aspects
102 T Lymphocytes Dominate the Cellular Infiltrate in Atopic Dermatitis
102 Role of Adaptive Immune Responses in Atopic Dermatitis Involving IgE Responses
102 Aeroallergen-Specific T Cells Are Well-Known Initiators and Perpetuators of Eczematous Responses in Atopic Dermatitis
140 Suppression of the DTH Response
141 Induction of Splenic CD8+ Suppressor T Cells via the Eye’s Anterior Chamber
141 Afferent and Efferent Mechanisms for Ocular-Induced CD8+ Regulatory T Cells
143 Antigen Specificity of the Suppression of DTH by CD8+ Regulatory T Cells
144 Qa-1β Restriction of CD8+ Suppressor T-Cell-Mediated Suppression
145 IFN-γ Facilitates the Suppression of DTH by Splenic CD8+ Suppressor T Cells
146 TGF-β Is a Mechanism of CD8+ Treg-Mediated Suppression of DTH
147 Conclusion
147 Acknowledgements
147 References

150 Novel Therapeutic Strategies by Regulatory T Cells in Allergy
Elkord, E. (Manchester)
150 Abstract
151 Role of T-Regulatory Cells in Inhibiting Allergic Diseases
151 Implications from Mouse Models
151 Evidence for Targeting Treg Cells
153 Therapeutic Strategies for Modulating Treg Activity in Allergy
153 Induction of Treg Activity by Peptide-Based Immunotherapy
154 Induction of Treg Activity by Targeting Toll-Like Receptors
155 Conclusion
156 References

158 T-Cell Regulatory Mechanisms in Specific Immunotherapy
Jutel, M. (Wroclaw); Akdis, C.A. (Davos)
158 Abstract
161 Peripheral T-Cell Tolerance in Allergen-Specific Immunotherapy
162 Peripheral T-Cell Tolerance to Allergens Is Associated with Regulation of Antibody Isotypes and Suppression of Effector Cells
163 T-Regulatory Cells
163 Tr1 Cells
164 Th3 Cells
164 CD4+CD25+ Treg Cells
165 Other T-Regulatory Cells
165 B-Regulatory Cells
165 Dendritic-Regulating Cells
166 Other Cells with a Possible Regulatory Function
166 Suppression Mechanisms of T-Regulatory Cells
168 Clinical Relevance of T-Regulatory Cells
169 cAMP-Stimulating G-Protein-Coupled Receptors in Peripheral Tolerance
170 Clinical Evidence for T-Regulatory Function of Histamine Receptors
171 Conclusion
171 References

178 Control and Regulation of Peripheral Tolerance in Allergic Inflammatory Disease: Therapeutic Consequences
Li, L.; Boussiotis, V.A. (Boston, Mass.)
178 Abstract
178 Pathobiology of the Allergic Inflammatory Response
179 Regulation of Peripheral T-Cell Tolerance and Aberrations in Allergic Diseases
181 T-Cell Anergy
181 Suppressive Cytokines (IL-10, TGF-β)
182 Natural and Adaptive Treg Cells
182 Mechanisms Promoting the Inflammatory Response in Allergic Diseases
182 Tumor Necrosis Factor-α
Lung Dendritic Cells: Targets for Therapy in Allergic Disease
Lambrecht, B.N. (Ghent/Rotterdam); Hammad, H. (Ghent)

Abstract
General Function of Dendritic Cells in the Immune System: Induction of Immunity
Function of Lung Dendritic Cells: Induction of Tolerance in Steady-State and Bridging Innate and Adaptive Immunity
Dendritic Cells in Established Allergic Airway Inflammation
Control of Lung DC Function by Regulatory T Cells
Perpetuation of Allergic Inflammation and Remodeling: A Role for Cytokine-Driven Activation of DCs?
Dendritic Cells as Drug Targets in Allergic Diseases
Conclusion
Acknowledgements
References

Antigen-Based Therapies Targeting the Expansion of Regulatory T Cells in Autoimmune and Allergic Disease
Leech, M.D.; Anderton, S.M. (Edinburgh)

Abstract
The Need for Precise Treatments for Autoimmune and Allergic Disease
T-Regulatory Cells in the Natural Resolution of Autoimmune and Allergic Inflammation
Antigen-Based Therapy for Autoimmune and Allergic Disease
Are Antigen-Based Therapies Expanding Tregs?
New Directions
Acknowledgements
References

Stem Cell Transplantation in Genetically Linked Regulatory T-Cell Disorders
Shenoy, S. (St. Louis, Mo.)

Abstract
Stem Cell Therapy Perspectives
Pros and Cons of SCT
Immune Regulatory Disorders Targeted by Stem Cell Transplantation
Systemic Lupus Erythematosus
Systemic or Polyarticular Rheumatoid Arthritis
Systemic Sclerosis
Type 1 Diabetes Mellitus
Autoimmune Lymphoproliferative Syndrome
Immune Dysregulation, Polyendocrinopathy, Enteropathy, and X-Linked Inheritance
Discussion
References

Author Index
Subject Index
Allergic diseases are immune reactions which represent the currently best knowledge of cellular and molecular mechanisms, generating and regulating different clinical manifestations at different organs. The knowledge on the immunological background of allergy meets the current state of the art in immunology and immune-related inflammatory guises. One reason for this is the knowledge and accessibility of the ultimate trigger of the disease, the allergen, which can relatively easily be determined and produced in pure form. This and other typical properties of allergy provide a most suitable disease model for the study of specific immune responses. It has definitely overcome the state where allergy was defined as equal to serum-IgE antibody content and the knowledge on the disease has escaped the state of simple IgE antibody measure. Allergic diseases have their origin in a deregulated immunity to exogenous molecules, being harmless as such, facilitated mostly by a preferential genetical constitution. Thus, in normal immunity to allergen mostly IgG4 antibodies are elicited, which can block the allergen and do not display Fc-related antibody functions, such as binding complement or Fc receptors on effector cells. The regulation of both normal and allergic immunity is fully T-cell-dependent and relies exclusively on the activation and action of different subtypes of T cells and their products, which in consequence activate and direct the entire network of immune and involved tissue cells.

Allergic inflammations are induced by increasingly generated Th2 cells, which dominantly secrete IL-4, IL-13 and IL-5 cytokines, triggering IgE antibodies and prolonging eosinophilic granulocyte survival. Interestingly it appeared that inhibited apoptosis by IL-5/GM-CSF and not extensive production of eosinophils is the cause of eosinophilia. While allergy initially depends on Th2 cells, Th1 cells producing TNF and IFN-γ, and which are induced at a later stage by bacterial or viral superinfections and superantigenic activation, are involved in the chronic progression of the disease. Both TNF and IFN-γ are able to induce death receptors on tissue cells and thus, together with other ligands, induce tissue cell death, such as bronchial epithelial and smooth muscle cells and keratinocytes in skin diseases. Activated effector T cells are directed by tissue-selective homing receptors and attracted by the aid of different chemokines. This basic knowledge could be generated only after recombinant cytokines became available after 1980.

It is established today that a set of T-regulatory cells (Tregs) as well as other T-cell subtypes are
involved in the mechanisms and regulation of allergic inflammations and that the interaction with tissue cells and effector cells plays an important role in the chronicity of the disease; Treg cells regulate the immune response to foreign triggers and participate in the maintenance of peripheral and central tolerance. Of decisive importance in immune response regulation to allergens and other specific triggers are functional Tregs (fig. 1). However, different functional Treg populations, such as CD4+CD25^{high} Tregs, Tr1, Th3 lymphocytes and NK cells exist, which can be distinguished by different cytokine profiles and marker expression. Tregs in allergy are highly activated, CD25^{high} peripheral T cells, which require continuous activation. TGF-β promotes the development of CD4+CD25^{high} FOXP3⁺ Tregs from naive CD4+ T cells. They are allergen-specific T cells, displaying immune suppressive functions, which are mediated by their IL-10 and/or TGF-β secretion. Thus, Tregs secreting these suppressive cytokines are true regulatory cells in that they suppress effector cells of allergy and IgE production by B cells, while they activate blocking antibodies of IgG4 and IgA type and promote development of Tregs from naive T-cell populations (fig. 2). At initiation they express the transcription factor FOXP3 (forkhead box protein 3), while Th2 cells express GATA3 and Th1 cells, T-BET (fig. 3). Peripheral Tregs, like Th1 and Th2, represent an independent T-cell lineage, developing from naive T cells after activation by allergen and DC contact, with the aid of TGF-β. They cannot develop from Th2 cells, e.g. in specific immunotherapy. Moreover, FOXP3 and Treg development is suppressed by GATA3 and IL-4, and therefore after activation of Th2 cells. Accordingly, it is difficult to skew an established allergic or atopic state into a Treg-equilibrated normal immune state. This is probably the reason for the long immunization procedure required for successful allergen-specific immunotherapy, although Tregs are induced by
high allergen doses within a short time after the first immunization (2–3 days). Tregs are required in sufficient numbers proportional to the specific Th effector cells and their suppressive function depends exclusively on their numbers in relation to the effector T cells.

An important T-cell subtype in chronic allergic responses are the Th17 cells, being defined by their IL-17 production. The Th17 subset is distinct from the Th1, Th2 and Tregs. They are important players in chronic inflammatory responses such as allergy and autoimmunity, organ transplantation and tumor development. Differentiation of Th17 is initiated by TGF-β in combination with IL-6. Also IL-21, highly expressed by mouse Th17 cells, potently induces Th17 differentiation and suppresses FOXP3, the nuclear factor for Treg differentiation. The Th17 differentiation is initiated by the orphan nuclear receptor RORyt, for humans termed RORC2. Th17 cells induce and amplify the inflammatory IL-1β and TNF-α response. Without the influence of these proinflammatory cytokines, IL-23 mainly from activated dendritic cells expands and stabilizes the Th17 population. In humans, Th17 cells are suppressed by IL-12, in the mouse, Th17 differentiation is inhibited by IFN-γ. GM-CSF is a crucial factor for granulocyte development and survival and development of organ-related autoimmune diseases. Innate GM-CSF induces IL-6 responses and generation of pathological Th17. TGF-β promotes the development of CD4+CD25high+FOXP3+ Tregs from naive CD4+ T cells. The balance between Th17 and Tregs is regulated by IL-2, which displays differential effects on the two T-cell lineages. Treg cells increase under the influence of IL-2, whereas
Th17 cell numbers are reduced and IL-2 neutralization boosts the Th17 differentiation. Both Th1 and Th2 differentiation depends on the strength of T-cell receptor activation and co-stimulatory interaction. Th17 cells require higher antigen doses for differentiation by enhancing IL-6 production and CD40L expression on dendritic cells. A lack of CD40-CD40L interaction leads to impaired Th17 production and autoimmunity. Thus, GM-CSF, antigen dose, and CD40-CD40L interaction regulate the IL-6 production, a key cytokine for Th17 development. A better understanding of transcriptional regulation of the different cell types and its relation to the inflammatory disease will provide further insight into the regulatory events involved in immune regulation of these chronic inflammatory diseases.

The present edition of ‘Molecular Immunology’ on ‘T-Cell Regulation in Allergy, Asthma and Atopic Skin Diseases’ provides the latest overview on the regulatory mechanisms by T lymphocytes and their subtypes in the organ-related allergic manifestations and specific treatments of the diseases. The issue is divided into three parts, the first part providing a modern view of the immunoregulatory processes in allergic inflammations. In particular, the development and the role of Treg cells in the induction of peripheral tolerance to allergens and the function of the Th17 cells in chronic inflammatory processes are described. In addition, the regulatory role of NK cells and the feedback interactions by activated mast cells, a major effector cell of the allergic reaction, are considered.

The second part describes the regulation and immunological events in different allergic diseases, such as asthma and atopic skin diseases, in parasite infection and delayed-type hypersensitivity. Special attention is paid to mucosal tolerance, which is important in many respects including...
also oral immunotherapy and tolerance induction. Finally, a most important part is devoted to the clinical consequences of the current immunological knowledge on T-cell regulation in novel therapeutic interventions. For almost 100 years it could not be demonstrated whether the effects of specific allergen immunizations rely on true immunological mechanisms or not. Thus, the demonstration of the immunological mechanism in allergen-specific immunotherapy, including the role of peripheral Tregs and their secreted suppressive cytokines, was a decisive step in both the understanding of the immunological background of this allergen-specific treatment and in allergic diseases in general. For a long time, and against clear facts, it was originally believed that specific allergen treatment should skew a Th2 into a Th1 response, which is clearly not the case since both extremes reflect pathogenic situations. From the understanding of mechanisms in allergen-specific immunotherapy, the knowledge of peripheral tolerance induction and the importance of the allergen-specific Treg cells have mostly appeared.

While on the one hand the aspects of Tregs and tolerance induction in allergen-specific immunotherapy and different procedures of vaccination are described, one chapter is added which describes future possibilities of stem cell transplantation in genetically linked disorders.

Thus, based on the role of different subpopulations of T cells activated by allergen and their cytokine production and interaction with effector and tissue cells, leading to different allergic manifestations, this book provides a modern overview on the T-cell-dependent immunoregulatory events in allergic inflammations and their clinical and therapeutic applications.

Kurt Blaser, Prof. PhD
Davos, August 2008