Subject Index

A
ABCC8, mutations in neonatal diabetes 121, 122
ACC2, see Acetyl-CoA carboxylase-2
Acetyl-CoA carboxylase-2 (ACC2), knockout mouse studies of metabolism 155, 156
Acromegaly, pituitary adenoma Rab18 expression and growth hormone regulation 11, 12
ACTH, see Adrenocorticotrophic hormone
Adaptive evolution, identification in human genome 213, 214
Addison's disease, hydrocortisone continuous subcutaneous infusion therapy 104
Adipose tissue development of fat 142
excess early postnatal weight gain and permanent reprogramming of brown adipose tissue adaptive thermogenesis 199, 200
fibroblast growth factor 21 and lipolysis attenuation 201
innervation 135, 136
subcutaneous fat transplantation studies in mouse insulin resistance 169, 160
Adrenal hyperplasia, see also Congenital adrenal hyperplasia
PDE8B mutations 105
Adrenal insufficiency (AI) glucocorticoid replacement therapy 103, 104
subjective health status impairment 103
Adrenal rest tumor, see Testicular adrenal rest tumor
Adrenocorticotrophic hormone (ACTH), vitamin C secretion induction in adrenal gland 105, 106
AFP, see Alpha-fetoprotein
AHDS, see Allan-Herndon-Dudley syndrome
AI, see Adrenal insufficiency
AIP, see Aryl hydrocarbon receptor-interacting protein
AITD, see Autoimmune thyroid disease
Allan-Herndon-Dudley syndrome (AHDS), monocarboxylate transporter 8 mutations in female 36
Alpha-fetoprotein (AFP), protection against defeminizing effects of estrogens in prenatal development 1
AMP-activated protein kinase (AMPK), role in energy homeostasis and glucose sensing 145, 146
AMPK, see AMP-activated protein kinase
Amylase, diet and evolution of gene copy number 213
Anastrozole, growth hormone deficiency management 45
Androgen receptor (AR) CAG repeats and male infertility 165, 166
suprachiasmatic nucleus expression and circadian behavior regulation 7
Angiogenesis, hypoxia-inducible factor-1/HIF-1 coupling of angiogenesis and osteogenesis in development 64, 65
Ankylosing spondylitis, single nucleotide polymorphism association scan 38
AP51, see Autoimmune polyglandular syndrome type 1
AR, see Androgen receptor
Aryl hydrocarbon receptor-interacting protein (AIP), pituitary adenoma role 12, 13
Asthma, genome-wide profiling of epithelial genes in corticosteroid treatment response 97, 98
Autoimmune polyglandular syndrome type 1 (APS1), immunoassays for diagnosis 195, 196
Autoimmune thyroid disease (AITD) selenium supplementation study 38, 39
single nucleotide polymorphism association scan 38

B
Birth weight
low birth weight infant catch-up growth and visceral fat 130, 131
hypertension risks in later life 172, 173
very low birth weight infant glucose regulation in young adults 192, 193
insulin management 191, 192
BMC, see Bone mineral content
BMD, see Bone mineral density
Body mass index, see Obesity
Bone C-type natriuretic peptide in chondrogenesis 76
dermatone regulation of energy metabolism by skeleton 63, 64
glucocorticoid signaling in endochondral bone development 78
hypoxia-inducible factor-1α bone regeneration role 65, 66
coupling of angiogenesis and osteogenesis in development 64, 65
Indian hedgehog growth plate and trabecular bone maintenance 73, 74
transient inhibition and bone structure defects in mice 74
rickets, see Rickets
SLC35D1 in development 66, 67
Bone mineral content (BMC) gonadotropin-releasing hormone analog therapy
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone mineral density (BMD)</td>
</tr>
<tr>
<td>Bone mineral density (BMD)</td>
</tr>
<tr>
<td>Breast cancer</td>
</tr>
<tr>
<td>Chromosome 14q32.2</td>
</tr>
<tr>
<td>Caveolin-1</td>
</tr>
<tr>
<td>Calcitriol</td>
</tr>
<tr>
<td>Calcitonin</td>
</tr>
<tr>
<td>Central nervous system infection</td>
</tr>
<tr>
<td>Cretinism</td>
</tr>
<tr>
<td>Cryptorchidism</td>
</tr>
<tr>
<td>C-type natriuretic peptide (CNP)</td>
</tr>
<tr>
<td>Cushing syndrome</td>
</tr>
<tr>
<td>Diabetes mellitus type 1</td>
</tr>
<tr>
<td>Diabetes mellitus type 2</td>
</tr>
</tbody>
</table>
insulin mutation screening 177, 178
interleukin-1 receptor antagonist therapy 152, 153
long-chain acyl-CoA dehydrogenase deficiency 155
metabolic abnormalities in obese adolescence 148, 149
metabolic syndrome in childhood and adult risks 150
mitochondrial dysfunction in muscle from oxidative stress 154
mitochondrial substrate oxidation in muscle of offspring 153, 154
transcription factor-7-like 2 gene polymorphisms and risks 160
DNA methylation heritable factors in IGFl/H19 locus 164, 165
memory role 211

E
ECC, see Embryonal carcinoma cell
EGC, see Embryonic germ cell
Embryonal carcinoma cell (ECC), marker expression in human fetal ovary 92, 93
Embryonic germ cell (EGC) marker expression in human fetal ovary 92
marker expression in human fetal testis 93
Embryonic stem (ES) cell androgen effects in early development 88
differentiation of male cells into sperm and oocytes 91, 92
growth factors in niche establishment in vitro 43, 44
Encephalitis, hypothalamic-pituitary insufficiency 21, 22
Epigenetics, see DNA methylation
ES cell, see Embryonic stem cell
Estrogen alpha-fetoprotein protection against defeminizing effects of estrogens in prenatal development
DNA oxidation and estrogen-induced gene expression 211
Estrogen receptor-2, gene polymorphisms in hypoplasias 166
Estrus cycle, neuronal sensitivity dependence on hormone status in rat 91
Ethanol, Drosophila disinhibited courtship induction 85, 86

F
Fat, see Adipose tissue
Fat oxidation acetyl-CoA carboxylase-2 knockout mouse studies 155, 156
defects with family history of diabetes mellitus type 2 156, 157
Ferret, adrenal gland disease 106, 107
Fertility androgen receptor CAG repeats 165, 166
β-defensin 126 and sperm function 83
gonadotropin-releasing hormone analog therapy in female idiopathic central precocious puberty effects 184, 185
kinship relationship study in humans 81, 82
FGF, see Fibroblast growth factor
Fibroblast growth factor (FGF) embryonic stem cell niche establishment in vitro 43, 44
FGF21 and insulin sensitivity lipolysis attenuation 201
obesity and metabolic syndrome correlation 201, 202
FGF23 in hypophosphatemia diagnosis 68, 69
Follicle-stimulating hormone (FSH), testosterone prenatal treatment effects in ewes 82
Food intake, mammalian target of rapamycin hypothalamic signaling in regulation 3
FoxP3 regulatory T cell enhanced thymic selection in nonobese diabetic mouse 110, 111
Stat5a/b nonredundant roles in regulation 57
Fragile X syndrome, small molecule rescue of phenotypes in Drosophila 209
FSH, see Follicle-stimulating hormone
FTO, gene polymorphisms and obesity 137, 138, 170, 171

G
GCP2, see Glucose-6-phosphate catalytic subunit-related protein
GDF5-UDQCC locus, single nucleotide polymorphisms and height 52
Genome sequencing, massively parallel DNA sequencing 163, 164
Germline stem cell, cardiomyocyte differentiation from adult mouse testis 93, 94
GH, see Growth hormone
Glucocorticoid receptor (GR), polymorphism protection against postnatal growth failure and insulin resistance after preterm birth 59, 60
Glucocorticoids dexamethasone neonatal exposure and long-term effects 99
prenatal exposure and long-term effects 98
genome-wide profiling of epithelial genes in asthma and treatment response 97, 98
hydrocortisone continuous subcutaneous infusion in Addison’s disease 104
septic shock management 100
replacement therapy 103, 104
signaling in endochondral bone development 78
Glucose-6-phosphate catalytic subunit-related protein (GCP2), gene polymorphism and fasting glucose levels 168
GM3, insulin receptor-caveolin-1 complex dissociation in insulin resistance 147, 148
GnRH, see Gonadotropin-releasing hormone
Gonadotropin-releasing hormone (GnRH) analog therapy in female idiopathic central precocious puberty effects 184, 185
Kiss1 knockout mice and hypogonadotropic hypogonadism 4, 5 neuron requirements for puberty, ovulation, and fertility in mouse 6, 7 testosterone prenatal treatment effects in ewes 82
Gpr54, knockout mice and hypogonadotropic hypogonadism 4, 5 G protein-coupled receptor kinase 2 (GRK2), adrenal upregulation and sympathetic overdrive in heart failure 96
GR, see Glucocorticoid receptor
GRK2, see G protein-coupled receptor kinase 2
Growth hormone (GH) anastrozole in deficiency management 45 craniofacial growth in idiopathic short stature and growth hormone therapy patients 188, 189 insulin-like growth factor-based dosing in therapy 178, 179 isolated growth hormone deficiency type II genotype-phenotype relationships 60 rescue of pituitary function with RNA interference 57, 58 pituitary adenoma Rab18 expression and growth hormone regulation 11, 12
eradiation therapy and neurosecretory dysfunction 203, 204 receptor d3 polymorphism effects on growth 171, 172 nuclear targeting studies 58, 59 recombinant growth hormone therapy for idiopathic short stature in children and adolescents 190, 191 Stat5 knockout mice and loss of sexually dimorphic liver gene expression 46, 47 thymic function enhancement in human immunodeficiency virus-infected infants 56, 57 traumatic brain injury and deficiency 20 Turner syndrome management in toddlers 179, 180 valtropin management of deficiency 190
Heart failure
G protein-coupled receptor kinase 2 adrenal upregulation and sympathetic overdrive 96 triiodothyronine trial in chronic heart 31, 32 Height, see also Growth hormone; Insulin-like growth factor craniofacial growth in idiopathic short stature and growth hormone therapy patients 188, 189 evidence-based guidelines for referral of short stature 182 evolutionary developmental biology 200, 201 genome-wide association analysis of influencing loci 54 gonadotropin-releasing hormone analog therapy in idiopathic central precocious puberty effects 184, 185 pygmy life history tradeoffs in evolution 197 screening programs during primary school years 182, 183 single nucleotide polymorphisms GDF5-UDQCC 52 high mobility group-A2 52
Hes1, posterior pituitary lobe development role
Hes5, posterior pituitary lobe development role
HIF-1α, see Hypoxia-inducible factor-1α
High mobility group-A2 (HMG2), single nucleotide polymorphisms and height 52
HIV, see Human immunodeficiency virus
HMG2, see High mobility group-A2
Human immunodeficiency virus (HIV), growth hormone therapy and thymic function enhancement in infected infants 56, 57
Hydrocortisone, see Glucocorticoids
Hypperaldosteronism, TASK channel knockout mice and induction 95, 96
Hypertension arterial hypertension and diabetic nephropathy risks 186, 187 low birth weight risks 172, 173 metabolic syndrome and primary hypertension in children 151, 152 prognostic accuracy of day versus night ambulatory blood pressure 198, 199
Hypogonadotropic hypogonadism Kiss1 knockout mice 4, 5 prokineticin 2 gene mutations 5, 6
Hypophosphatemia calcimimetics in familial hypophosphatemic rickets management 70, 71
<table>
<thead>
<tr>
<th>Subject</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>fibroblast growth factor-23 in diagnosis</td>
<td>68, 69</td>
</tr>
<tr>
<td>α-Klotho gene translocation in hypophosphatemic rickets</td>
<td>71, 72</td>
</tr>
<tr>
<td>Hypospadias</td>
<td>estrogen receptor-2 gene polymorphisms</td>
</tr>
<tr>
<td>programming window in rat</td>
<td>88, 89</td>
</tr>
<tr>
<td>reproductive health problems among fathers of boys with hypospadias</td>
<td>181</td>
</tr>
<tr>
<td>risk factor analysis</td>
<td>180</td>
</tr>
<tr>
<td>Hypothalamus</td>
<td>dehydration-induced proteome changes in rat</td>
</tr>
<tr>
<td>gene mutations in development</td>
<td>14</td>
</tr>
<tr>
<td>mammalian target of rapamycin signaling in food intake regulation</td>
<td>3</td>
</tr>
<tr>
<td>neurokinin B neurons and sexual dimorphism</td>
<td>2</td>
</tr>
<tr>
<td>proopiomelanocortin neuron glucose sensing and obesity role</td>
<td>3, 4</td>
</tr>
<tr>
<td>sensory-neurosecretory cell evolution</td>
<td>8, 9</td>
</tr>
<tr>
<td>thyroid-stimulating hormone and photoperiodic response triggering in bird pars tuberalis</td>
<td>8, 27, 28</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>congenital hypothyroidism</td>
</tr>
<tr>
<td>congenital hypothyroidism from thyroid dysgenesis random variability study</td>
<td>400</td>
</tr>
<tr>
<td>risks in multiple pregnancies</td>
<td>39, 40</td>
</tr>
<tr>
<td>thyrotropin-releasing hormone stimulation test for congenital central hypothyroidism diagnosis in infants</td>
<td>35</td>
</tr>
<tr>
<td>cretinism in small human-like fossils</td>
<td>40, 41</td>
</tr>
<tr>
<td>thyroid-stimulating hormone in diagnosis of subclinical hypothyroidism</td>
<td>34, 35</td>
</tr>
<tr>
<td>thyroxine versus triiodothyronine treatment</td>
<td>31</td>
</tr>
<tr>
<td>triiodothyronine treatment</td>
<td>30, 31</td>
</tr>
<tr>
<td>Hypoxia-inducible factor-1α (HIF-1α) bone regeneration role</td>
<td>65, 66</td>
</tr>
<tr>
<td>coupling of angiogenesis and osteogenesis in development</td>
<td>64, 65</td>
</tr>
<tr>
<td>Hypoxia-inducible factor-1α (HIF-1α) bone regeneration role</td>
<td>65, 66</td>
</tr>
<tr>
<td>coupling of angiogenesis and osteogenesis in development</td>
<td>64, 65</td>
</tr>
<tr>
<td>ICSI, see Intracytoplasmic sperm injection</td>
<td></td>
</tr>
<tr>
<td>IGF, see Insulin-like growth factor</td>
<td></td>
</tr>
<tr>
<td>IGF2/H19 locus, heritable factors in DNA methylation</td>
<td>164, 165</td>
</tr>
<tr>
<td>IGRP, see Glucose-6-phosphate catalytic subunit-related protein</td>
<td></td>
</tr>
<tr>
<td>Ilh, see Indian hedgehog</td>
<td></td>
</tr>
<tr>
<td>IL-1, see Interleukin-1</td>
<td></td>
</tr>
<tr>
<td>Indian hedgehog (Ihh) growth plate and trabecular bone maintenance</td>
<td>73, 74</td>
</tr>
<tr>
<td>transient inhibition and bone structure defects in mice</td>
<td>74</td>
</tr>
<tr>
<td>Induced pluripotent stem cell, cell culture factors</td>
<td>210, 211</td>
</tr>
<tr>
<td>INSIG2, see Insulin-induced gene 2</td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>diabetes mellitus type 1 and continuous subcutaneous insulin infusion therapy children and adolescents</td>
</tr>
<tr>
<td>comparison with multiple daily injections in pediatric diabetes</td>
<td>189, 190</td>
</tr>
<tr>
<td>fibroblast growth factor 21 and sensitivity lipolysis attenuation</td>
<td>201</td>
</tr>
<tr>
<td>obesity and metabolic syndrome correlation</td>
<td>201, 202</td>
</tr>
<tr>
<td>mutation screening in diabetes</td>
<td>177, 178</td>
</tr>
<tr>
<td>O-GlcNAC transferase signaling in insulin resistance</td>
<td>158, 159</td>
</tr>
<tr>
<td>receptor caveolin-1 complex</td>
<td></td>
</tr>
<tr>
<td>dissociation by GM3 in insulin resistance</td>
<td>147, 148</td>
</tr>
<tr>
<td>soluble ectodomain levels in diabetes</td>
<td>123, 124</td>
</tr>
<tr>
<td>slowly progressive diabetes mellitus type 1 intervention</td>
<td>111, 112</td>
</tr>
<tr>
<td>very low birth weight infant management</td>
<td>191, 192</td>
</tr>
<tr>
<td>Insulin-induced gene 2 (INSIG2), gene polymorphism and weight loss during lifestyle intervention</td>
<td>136</td>
</tr>
<tr>
<td>Insulin-like growth factor (IGF) embryonic stem cell niche establishment in vitro</td>
<td>43, 44</td>
</tr>
<tr>
<td>IGF-1 growth hormone therapy dosing</td>
<td>178, 179</td>
</tr>
<tr>
<td>long-term treatment effects</td>
<td>44, 45</td>
</tr>
<tr>
<td>receptor mutations in centenarians</td>
<td>60, 61</td>
</tr>
<tr>
<td>Stat5 knockout mice loss of sexually dimorphic liver gene expression</td>
<td>46, 47</td>
</tr>
<tr>
<td>skeletal muscle depletion and expression</td>
<td>46</td>
</tr>
<tr>
<td>somatomedin hypothesis</td>
<td>77</td>
</tr>
<tr>
<td>Insulin receptor substrate-2 (IRS2), signaling coordination of lifespan and nutrient homeostasis</td>
<td>146</td>
</tr>
<tr>
<td>Insulin tolerance test (ITT), copeptin evaluation of pituitary function</td>
<td>22</td>
</tr>
<tr>
<td>Interleukin-1 (IL-1), receptor antagonist therapy in diabetes mellitus type 2</td>
<td>152, 153</td>
</tr>
<tr>
<td>Intracytoplasmic sperm injection (ICSI), testosterone levels in infant boys</td>
<td>181, 182</td>
</tr>
<tr>
<td>Iodotyrosine deiodinase, gene mutations and hypothyroidism</td>
<td>28–30</td>
</tr>
<tr>
<td>IRS2, see Insulin receptor substrate-2</td>
<td></td>
</tr>
<tr>
<td>ITT, see Insulin tolerance test</td>
<td></td>
</tr>
</tbody>
</table>
J

Juvenality, life history theory 61, 62

K

Kallmann syndrome, prokineticin 2 gene mutations 5, 6
KB2115, thyroid hormone mimetic actions 33, 34
Kidney, reconstitution and implantation of rat tissue 212, 213
Kiss1, knockout mice and hypogonadotropic hypogonadism 4, 5
α-Klotho
gene translocation in hypophosphatemic rickets 71, 72
mutation and tumoral calcinosis 72, 73

L

LCAD, see Long-chain acyl-CoA dehydrogenase
LEOPARD syndrome, RAF1 mutations 48, 49
Leptin
central effects in eating behavior 135
replacement therapy 134, 135
Levothyroxine, see Thyroid hormone
LH, see Luteinizing hormone
LHX3
mutations, hypopitiotarism, and sensorineural hearing loss 14, 15
pituitary hypoplasia
mechanisms in knockout mouse 15–17
Lipopolysaccharide (LPS), metabolic endoxemia
initiation of obesity and insulin resistance 161, 162
Long-chain acyl-CoA dehydrogenase (LCAD),
deficiency in diabetes mellitus type 2 and insulin resistance 155
Low birth weight, see Birth weight
LPS, see Lipopolysaccharide
Luteinizing hormone (LH)
alpha-fetoprotein knockout mouse and defects in preovulatory surge 1
testosterone prenatal treatment effects in ewes 82

M

MAGE2, knockout mouse model of Prader-Willi syndrome 56
Mammalian target of rapamycin (mTOR), hypothalamic signaling in food intake regulation 3
Maturity-onset diabetes of the young (MODY), insulin mutation screening 177, 178
MC4, see Melanocortin-4 receptor
MCT10, see Monocarboxylate transporter 10
MCT8, see Monocarboxylate transporter 8
Melanocortin-4 receptor (MC4), gene polymorphisms and obesity 169
Memory, epigenetic memory 211, 213
Meningitis, hypothalamic-pituitary insufficiency 21, 22
Mesenchymal stem cell (MSC), osteogenesis imperfecta management prospects 67, 68
Metabolic syndrome
childhood occurrence and adult risk prediction 150
fibroblast growth factor 21 correlation 201, 202
metabolic endoxemia
initiation of obesity and insulin resistance 161, 162
muscle insulin resistance in pathogenesis 157, 158
neuropeptide Y mediation 131–133
non-alcoholic steatohepatitis liver histology in children 150, 151
primary hypertension in children 151, 152
subcutaneous fat transplantation studies 169, 160
Methyl nitrate, breath testing for hyperglycemia in diabetes mellitus type 1 109, 110
Microbiota
human microbiome project 161
metabolic endoxemia
initiation of obesity and insulin resistance 161, 162
Microcephalic osteodysplastic primordial dwarfism type II (MOPD II), pericentrin mutations 51, 52
Mitochondrial dysfunction, diabetes mellitus type 2
long-chain acyl-CoA dehydrogenase
deficiency 155
muscle dysfunction from oxidative stress 154
substrate oxidation in muscle of offspring 153, 154
MODY, see Maturity-onset diabetes of the young
Monocarboxylate transporter 8 (MCT8)
genotype-phenotype relationships 26, 27
mutations in female Allan-Herndon-Dudley syndrome 36
Monocarboxylate transporter 10 (MCT10), thyroid hormone transport 37, 38
MOPD II, see Microcephalic osteodysplastic primordial dwarfism type II
MS, see Multiple sclerosis
MSC, see Mesenchymal stem cell
mTOR, see Mammalian target of rapamycin
Multiple sclerosis (MS), single nucleotide polymorphism association scan 38
Muscle
diabetes mellitus type 2
mitochondrial substrate oxidation in muscle of patient offspring 153, 154
mitochondrial dysfunction from oxidative stress 154
insulin resistance in metabolic syndrome
pathogenesis 157, 158
Stat5 knockout mice and IGF-1 expression 46

N

NASH, see Non-alcoholic steatohepatitis
Neonatal diabetes, see Diabetes mellitus type 1
Neuroborreliosis, hypothalamic-pituitary insufficiency 21, 22
Neurofibromatosis type 1 (NF1), RNF135 mutations 50
Neurokinin B (NKB), hypothalamic neurons and sexual dimorphism 2
Neuropeptide Y (NPY), mediation of stress-induced obesity and metabolic syndrome 131–133
NF1, see Neurofibromatosis type 1
NKB, see Neurokinin B
Non-alcoholic steatohepatitis (NASH), liver histology in pediatric metabolic syndrome 150, 151
Noonan syndrome, RAF1 mutations 48–50
NPY, see Neuropeptide Y

O

Obesity
adipose tissue innervation 135, 136
coronary heart disease risks adolescent body mass index 129, 130
childhood body mass index 129
developmental origin of fat 142
fibroblast growth factor 21 correlation 201, 202
FTO gene polymorphisms 137, 138, 170, 171
gene sequencing variant studies 174
heritability 170
hypothalamic proopiomelanocortin neuron glucose sensing role 3, 4
insulin-induced gene 2 polymorphism and weight loss during lifestyle intervention 136
leptin central effects in eating behavior 135
replacement therapy 134, 135
levothyroxine therapy effects in acquired hypothyroidism 140, 141
low birth weight infant catch-up growth and visceral fat 130, 131
melanocortin-4 receptor gene polymorphisms 169
metabolic endoxemia initiation of obesity and insulin resistance 161, 162
neuropeptide Y mediation of stress-induced obesity and metabolic syndrome 131–133
peroxisome proliferator-activating receptor-δ variants and body composition 133, 134
prediabetic metabolic abnormalities in obese adolescence 148, 149
prohormone convertase 1/3 mutation and hyperphagia with early-onset obesity 136, 137
recommendations for management in children and adolescents 141, 142
retinaldehyde repression 132, 133
social network spread 202, 203
Stat5 signaling loss studies 48
thyroid axis activation in management 32
weight management program clinical trials in children 138–140
O-GlcNAc transferase (OGT), insulin resistance role 158, 159
OGT, see O-GlcNAc transferase
OI, see Osteogenesis imperfecta
Oocyte, differentiation of male embryonic stem cells 91, 92
Osteocalcin, energy metabolism regulation in skeleton 63, 64
Osteogenesis imperfecta (OI), mesenchymal stem cell treatment 67, 68
Osteoporosis, single nucleotide polymorphism association scans of bone mineral density and fractures 75
Oxidative stress, mitochondrial dysfunction in muscle in diabetes mellitus type 2 154

P

PC1/3, see Prohormone convertase 1/3
PDE8B, mutation in adrenal hyperplasia 105
Pericentrin microcephalic osteodysplastic primordial dwarfism type II mutations 51, 52
Seckel syndrome mutations 51
Peroxisome proliferator-activating receptor-δ, variants and body composition 133, 134
Pituitary adenoma
aryl hydrocarbon receptor-interacting protein role 12, 13
Prkar1α knockout and tumorigenesis 13
Rab18 expression and growth hormone regulation 11, 12
Pituitary development gene mutations 14
posterior lobe development role of Hes1 and Hes5 24
WNT signaling 18
Pituitary stem cell genetic approaches in identification 18, 19
SOX2 expression and differentiation potential 19, 20
POMC, see Proopiomelanocortin
Prader-Willi syndrome (PWS), MAGEL2 knockout mouse model 56
Precocious puberty, gonadotropin-releasing hormone analog therapy in idiopathic central precocious puberty 184, 185
Prkar1a, knockout and pituitary tumorigenesis 13
Progesterone, early nutritional programming of adult levels 207
Prohormone convertase 1/3 (PC1/3), mutation and hyperphagia with early-onset obesity 136, 137
Prokineticin 2, gene mutations in hypogonadotropic hypogonadism and Kallmann syndrome 5, 6
Prolactin, rodent studies and human relevance 25
Proopiomelanocortin (POMC), hypothalamic neurons AMP-activated protein kinase role in energy homeostasis and glucose sensing 145, 146
PTEN, oocyte-specific deletion effects 83, 84
PWS, see Prader-Willi syndrome
Pygmy, life history tradeoffs in evolution 197
Rab18, pituitary tumor expression and growth hormone regulation 11, 12
RAF1, mutation in Noonan and LEOPARD syndromes 48–50
Receptor tyrosine kinase (RTK), molecular break in hinge region of growth factor receptor 45, 46
Regulatory T cell (Treg), FoxP3+ cell enhanced thymic selection in nonobese diabetic mouse 110, 111
Retinaldehyde, obesity repression 132
Rice, engineering for water use efficiency 214
Rickets
calcimimetics in familial hypophosphatemic rickets management 70, 71
α-Klotho gene translocation in hypophosphatemic rickets 71, 72
RNA interference, isolated growth hormone deficiency type II and rescue of pituitary function 57, 58
RTK, see Receptor tyrosine kinase
Russell-Silver syndrome, 11p15 imprinting center region 1 loss of methylation 55

S
SCN, see Suprachiasmatic nucleus
Seckel syndrome, pericentrin mutations 51
Selenium, autoimmune thyroid disease supplementation study 38, 39
Septic shock, hydrocortisone therapy 100
Sex determination gene responses to temperatures 86, 87
synergistic action of SRY and steroidogenic factor-1 on Sox9 enhancer 87
Sex ratio bovine preovulatory follicular testosterone and sex determination 85
diet effects in mice 84, 85
SF1, see Steroidogenic factor 1
Single nucleotide polymorphisms (SNPs) association scans autoimmune diseases 38
bone mineral density and fractures 75
diabetes mellitus type 2 susceptibility genes 121, 167
estrogen receptor-2 and hypospadias risks 166
FTO gene polymorphisms and obesity 137, 138, 170, 171
glucose-6-phosphate catalytic subunit-related protein and fasting glucose levels 168
growth hormone receptor d3 polymorphism effects on growth 171, 172
height effects GDF5-UDQCC locus 53
high mobility group-A2 52
insulin-induced gene 2 polymorphism and weight loss during lifestyle intervention 136
melanocortin-4 receptor and obesity 169
peroxisome proliferator-activating receptor-δ variants and body composition 133, 134
transcription factor-7-like 2 birth weight effects 173
diabetes mellitus type 2 risks 160
vascular endothelial growth factor in diabetic retinopathy 110, 111
Skeleton, see Bone
SLC35D1, cartilage and skeletal development role 66, 67
Sleep, neuroendocrine patterns in diabetes mellitus type 1 113, 114
SNPs, see Single nucleotide polymorphisms
Somatomedin hypothesis 77
SOX2
pituitary, forebrain, and eye development role 17
pituitary progenitor cell expression and differentiation potential 19, 20
Sperm
β-defensin 126 function 83
differentiation of male embryonic stem cells 91, 92
Stat5a/b
knockout mice
loss of sexually dimorphic liver gene expression 46, 47
skeletal muscle depletion and IGF-1 expression 46
nonredundant roles in FoxP3 regulation 57
signaling loss and obesity 48
Stem cell, see Embryonic stem cell; Germline stem cell; Induced pluripotent stem cell; Mesenchymal stem cell; Pituitary stem cell
Steroidogenic factor 1 (SF1) knockout mouse and anxiety induction 96, 97 synergistic action with SRY on Sox9 enhancer 87
Sulfonylurea receptor-1 (SUR1), mutation and induction of neonatal diabetes mellitus 118, 119
Suprachiasmatic nucleus (SCN), androgen receptor expression and circadian behavior regulation 7
SUR1, see Sulfonylurea receptor-1
TART, see Testicular adrenal rest tumor
TASK channel, knockout mice and hyperaldosteronism induction 95, 96
TBI, see Traumatic brain injury
TCF7L2, see Transcription factor-7-like 2
Testicular adrenal rest tumor (TART)
Leydig and Sertoli cell function in classical congenital adrenal hyperplasia 101, 102 prevalence in congenital adrenal hyperplasia with 21-hydroxylase deficiency 101
Testosterone bovine preovulatory follicular testosterone and sex determination 85 intracytoplasmic sperm injection conception and testosterone levels in infant boys 181, 182 prenatal treatment effects in ewes gonadotropin regulation 82 reproductive hormone dynamics and ovulation 82 stem cell effects in early development 88 Thyroid hormone KB2115 mimic actions 33, 34 levothyroxine therapy effects on body mass index in acquired hypothyroidism 140, 141 monocarboxylate transporter 10 transport 37, 38 obesity and thyroid axis activation in management 32 thyroxine versus triiodothyronine for treatment of hypothyroidism 31 triiodothyronine chronic heart failure trial 31, 32 hypothyroidism treatment 30, 31 Thyroid-stimulating hormone (TSH) diagnosis of subclinical hypothyroidism 34, 35 photoperiodic response triggering in bird pars tuberalis 8, 27, 28 Thyrotropin-releasing hormone (TRH), stimulation test for congenital central hypothyroidism diagnosis in infants 35 Thyroxine, see Thyroid hormone Transcription factor-7-like 2 (TCF7L2), gene polymorphisms birth weight 173 diabetes mellitus type 2 risks 160 Traumatic brain injury (TBI) growth hormone deficiency 20 pituitary function in pediatric survivors 20, 21 Treg, see Regulatory T cell TRH, see Thyrotropin-releasing hormone

V
Valtropin, growth hormone deficiency management 190 Vascular endothelial growth factor (VEGF), single nucleotide polymorphisms in diabetic retinopathy 110, 111 VEGF, see Vascular endothelial growth factor Very low birth weight, see Birth weight Vitamin C, secretion induction by adrenocorticotrophic hormone in adrenal gland 105, 106 Vitamin D cardiovascular risk factors in deficiency 196, 197 deficiency and health impact 76, 77

W
WHO-5 index, validation in adolescents with diabetes mellitus type 1 115, 116 WNT, signaling in ventral diencephalon and pituitary gland growth 18

X
Xanthurenic acid 8-O-β-D-glucoside, natriuretic hormone activity 198 Xanthurenic acid 8-O-sulfate, natriuretic hormone activity 198

Triiodothyronine, see Thyroid hormone TSH, see Thyroid-stimulating hormone Tuberculosis, fossil evidence in man 209, 210 Tumoral calcinosis, α-Klotho mutations 72, 73 Turner syndrome cancer risks 204, 205 growth hormone management in toddlers 179, 180

Subject Index