Oral Presentations

1 Mild Fasting Hyperglycemia in Children: High Rate of Glucokinase Mutations and Some Risk of Developing Type 1 Diabetes Mellitus

Instituto de Investigación Materno infantil (IDIMI), Universidad de Chile, Chile

Background: Incidental hyperglycemia in children generates concern about the presence of preclinical type 1 diabetes mellitus (T1DM)

Objective: To genetically evaluate MODY2 and MODY3 and the short-term prognosis in children with mild hyperglycemia and a positive family history of diabetes mellitus.

Subjects: Asymptomatic children and adolescents, younger than 15 years, with fasting hyperglycemia, a positive family history of mild non-progressive hyperglycemia and negative pancreatic autoantibodies were studied.

Methods: Glucokinase (GCK) and Hepatocyte Nuclear Factor 1 alpha (HNF1-α) causing Maturity Onset Diabetes of Youth 2 (MODY2) and MODY3, respectively, were sequenced. The clinical outcome was evaluated after a follow-up period of 2.8 ± 1.3 yr (range: 1 to 4.8 yr.)

Results: GCK mutations were present in half of the children. The confirmation of this diagnosis allowed discontinuation of insulin in two families and oral medications in three families. Mutations of HNF1-α were not detected in any of the families.

During the follow-up period, all the GCK mutation carrier children remained asymptomatic without medication and the last fasting blood glucose (BG) and HbA1c levels were 114 ± 13 mg/dl and 6.4 ± 0.7 %, respectively. In the GCK negative children (N = 7), one developed type 1 diabetes mellitus, corresponding to 14.3% of the GCK negative children or to 7.2% of the total group. Mild fasting hyperglycemia persisted during follow-up in four GCK negative children and normalized in the remaining two.

Conclusions: Incidental hyperglycemia in children with a positive family history of diabetes is frequently associated with GCK mutations. The molecular diagnosis allowed discontinuation of medications in several families. However, in those children without a GCK or HNF1-α mutation there is some risk to develop type 1 diabetes mellitus

Sources of support: NIDDK 52431, DERC and ORC DK-04-021

2 Impaired Postreceptor IGF-1 Signaling in Skin Fibroblasts from Children Born Small for Gestational Age (SGA)

L. Montenegro, D. Coutinho, I. Arnhold, B. Mendonca, A. Jorge
Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da FMUS, São Paulo, Brasil

Introduction: The role of post receptor defects in IGF-1 signaling on the deficit of growth is still unclear.

Objective: To assess IGF-1 action in fibroblasts from SGA children.

Methods: Fibroblast cell cultures were developed from 4 SGA children with clinical IGF-1 insensitivity, defined by severe pre and postnatal growth impairment without any evident cause, IGF1 SDS > 0 and poor growth response during high doses of hGH treatment. Mutations in GHR, IGF1 and IGF1R gene were ruled out. IGF-1 action was assessed by cell proliferation. The expression of IGF1R gene was determined by Real-time RT-PCR and the levels of the IGF1R protein by direct immunoblotting. IGF-1 signaling was assessed by AKT and ERK phosphorylation after IGF-1 stimulation by immunoblotting.

Results: Fibroblast proliferation induced by IGF-1 was on average 60% lower in 3 SGA cell lines in comparison with the controls. The expression of IGF1R mRNA and the level of total amount of IGF1R protein were similar in all SGA and control cell lines. Despite normal structure, quantity of IGF-1R and similar total AKT and ERK, the same 3 SGA cell lines that presented low proliferation response also had 50 to 85% lower ERK phosphorylation after IGF-1 treatment. All SGA cell cultures presented normal AKT phosphorylation.

Conclusions: The IGF-1 insensitivity observed in these SGA children is caused by abnormal RAS/MAPK pathway, instead of mutations in IGF1R gene. This is the first report demonstrating IGF-1 postreceptor signal impairment in children with pre and postnatal growth retardation unresponsive to hGH therapy.
Novel molecular insights have suggested that Ghrelin, a growth hormone secretagogue and orexigenic hormone, may be involved in the pathogenesis of some forms of short stature. Recently Pantel et al (JCI, 2006), described a GHSR missense mutation that segregates with short stature in 2 unrelated families. Our aim was to study Ghrelin plasma levels in prepubertal patients with ISS. Mean Chronological age was 8 ± 0.5 yrs and mean BMI 17.9 ± 0.3 Kg/m2. Fasting total plasma Ghrelin levels were determined by RIA (Linco Research, St. Charles, Missouri) in patients with ISS and compared with age and sex-matched controls with normal height. The sensitivity of the Ghrelin assay was 93 pg/ml, with an Intra CV of 6.5% and inter CV of 12.1%. In a subgroup of 20 patients Ghrelin was sequenced. Statistical analysis was performed with SPSS 10.0 for Windows. *p < 0.001 ** p < 0.005 *p < 0.05 ISS patients exhibited a significant higher level of ghrelin (1458 ± 137 vs 935 ± 55**(pg/ml)) and a lower level of insulin. Treatment with sulfonylureas allowed an optimal metabolic control in a high proportion of patients with NDM.

Aim: To study the molecular etiology of NDM, and the long term outcome in children transferred from insulin to sulfonylurea treatment.

Methods: Children who had NDM were studied (N = 12). The coding sequences and intron-exon boundaries of the KCNJ11, ABCC8, INS and GCK genes were sequentially performed. Those patients with a mutation in KCNJ11 or ABCC8 genes were offered the possibility of transfer to sulfonylureas.

Results: One half of the patients had an identifiable mutation: three of them had an activating heterozygous mutation of KCNJ11 (two patients had a R201H and the remaining a R201L mutation; Pt 1–3), one had a heterozygous missense mutation (Q211K) in the ABCC8 gene (PT4) and two siblings (PTS−6) were compound heterozygotes for the novel missense mutations L438F and M1290V of the ABCC8 gene. Their parents, who were diagnosed with DM2 during their fourth and fifth decade of life, carried one abnormal allele. Successful transfer to glibenclamide was performed in PT1−4. PT5−6 declined to be transferred. The patients who were transferred have been followed for 26 ± 6.2 months with a decrease of HbA1c levels from 8.9 ± 1.8 to 6.2 ± 0.8%.

Conclusions: The molecular diagnosis allowed discontinuing insulin. Treatment with sulfonylureas allowed an optimal metabolic control in a high proportion of patients with NDM.

A complex network of signs is involved in the regulation of IGC pool preservation. The mechanisms that might participate are unknown. We have shown that aromatase (ARO) and beta estrogen receptor are expressed in IGC from prepubertal human testis (HT). We described that ARO expression change with the age, being higher in HT from neonatal (NEO) and postnatal activation (PNA) than during prepuberty (PP) (Berensztein, Ped Res 2006). In this study we analyzed the expression of IGFs system and insulin receptor (IR) as possible target in the IGC pool regulation.

HT (n = 36) were divided in 3 age groups (Gr): Gr1 NEO (<1 mo), Gr2 PNA (1−7mo), Gr3 PP (early and late PP). Immunoexpression of c-kit (marker of IGC), IGF1, IGF2, type 1 IGF receptor (IGFR) and IR in GC was studied. Data were expressed as % of positive GC, x ± DS.

c-kit expression was significantly higher in Gr1 and Gr2 than in Gr3 (41.7 ± 14.3, 24.4 ± 17.3, 14.5 ± 13.2, p < 0.05). Also c-IGF1 expression decreased significantly with the age (r = -0.458, p = 0.021). High expression of IGF2 (25.6 ± 3.1, 29.2 ± 7.1 and 28.3 ± 6.6) and IR (37.3 ± 11.9, 41.4 ± 13.1 and 50.8 ± 6.5) while moderate expression of IGF1 (9.08 ± 7.89, 6.7 ± 6.97 and 8.81 ± 3.65) and IGFR
(7.75 ± 5.59, 13.0 ± 13.2 and 4.63 ± 7.21, Gr1, Gr2 and Gr3 respectively) were observed.

The decreased in c-kit expression with age, might suggest changes in the GC population in HT during PP. Since the percentage of IGF1, IGF2, IGFR and IR expression in GC do not change in function of age, it can be suggested that IGFs system and insulin might have a role in maintaining an adequate IGC pool in the HPPT.

6 Chronic Administration of Insulin Like Growth Factors (IGFs) Modulates Response to Human Chorionic Gonadotropin (HCG) by Leydig Cells of Human Prepubertal Testes (HPT) In Culture

M. Costanzo1, E. Berensztein1, M. Baquedano1, N. Saraco1, R. Domanico2, M. Murano2, M. Rivarola1, A. Belgorosky1

1Laboratorio de Investigación, Servicio de Endocrinología, Hospital de Pediatría JP Garrahan, 2Area Farmoquímicos Naturales, Instituto Nacional de Tecnología Industrial, Buenos Aires, Argentina

We have previously published (Berensztein et al, Ped Res 2008) the characterization of the expression of IGF1, IGF2, IGFR receptor type 1 (IGFR1) and insulin receptor (IR) in HPT of 3 age groups (GR): GR1, neonates; GR2, postnatal activation; GR3, early puberty, as well as the effect of IGF1 on cell proliferation and apoptosis, P450scc expression and testosterone (T) secretion, in primary culture. A role for IGFs in the modulation of Leydig cell differentiation was proposed. In this study, we have analyzed the effect of chronic stimulation by IGF1 on hCG acute response. HPTs, collected at necropsy, were grouped for culture, as published. Pre-incubation with IGF1 significantly increased T response to acute hCG stimulation (396 ± 133 % of basal; mean ± MSE; n = 7; p < 0.05). Moreover, in one culture of GR1, IGF2 significantly increased T secretion (175%, p < 0.05) in the absence of other stimuli, real time RT-PCR of type 2 3beta-hydroxysteroid-dehydrogenase and 17alpha-hydroxylase enzymes on day 6 of culture (5.7 and 8.2 times respectively; 2-deltadeltaCT), and T response to acute hCG stimulation (237 %, p < 0.05). This effect was blocked by the presence of picropodophyllin, a selective inhibitor of IGFR1. These results are in favor of the hypothesis that the IGF system modulates functional differentiation of Leydig cells, in HPT.

7 Kinetics of the Nuclear Translocation of STAT5b in Immortalized Normal Control Lymphocytes, as Studied by Immunocytochemistry. Sexual Dimorphism of the Growth Hormone Receptor Signalling Pathway Response to rhGH

E. Chaler, M. Gonzalez, C. Meazza, K. Laarej, S. Pagan, M. Rivarola, M. Bozzola, A. Belgorosky

Hospital. de Pediatria Prof. Dr Juan P Garrahan, Buenos Aires, Argentina

Growth retardation and low concentrations of IGF-1 with normal or increased serum growth hormone GH define GH insensitivity (GHI). Delay in nuclear translocation (NT) could indicate insensitivity, as demonstrated in generalized glucocorticoid resistance. Kinetics of NT of transcription factors in the GH signalling pathway has not been previously described. The kinetics of GH-induced NT of Stat5b, assessed by immunocytochemistry, was studied in normal control lymphocytes of healthy young adults (n = 13; 5 men, 8 women). Lymphocytes (immortalized with Epstein-Barr viruses) were stimulated with 500 ng/ml rhGH, in triplicate, for times 0(T0), T15, T30, T45 and T60 minutes. After fixation with formaldehyde-acetic acid, immunocytochemistry was carried out with mouse anti Stat5b as primary antibody, and CSA K1500 (DAKO). Marked nuclei were counted, and results were expressed as fold increment of percentages of positive nuclei respect to basal. Mean ± SD for each study time was as follows: T15:1.9 ± 0.6, T30:2.4 ± 0.5, T45:1.8 ± 0.4 and T60:1.4 ± 0.4, all different from basal values (p < 0.0001). T30 is the usual maximum peak time of nuclear localization after rhGH stimulation. A sex difference was found in the area under this peak (fold X minutes), men 60.7 ± 15.1 vs women 35.0 ± 8.4, (p < 0.006). We conclude that induction of NT of Stat5b, assessed by immunocytochemistry, could be a useful test to study alterations of the GH receptor signalling pathway. Our preliminary data show a sexual dimorphism of the GH receptor signalling pathway response to rhGH.

8 Reduced STAT3 Nuclear Translocation in Fibroblasts from Children with Short Stature and Apparent Growth Hormone Insensitivity

T. Salazar, J. Martinez, J. Lammoglia, C. Lavarello, R. Roman, F. Cassorla

Instituto de Investigaciones Materno Infantil (IDIMI), Facultad de Medicina, Universidad de Chile. Complejo Hospitalario San Borja Arriaran, Santiago, Chile

Introduction: The STAT proteins play an important role in GH signal transduction. STAT5 proteins have been studied extensively in children with short stature, but there is scarce information available regarding STAT3.
Objective: To study total and phosphorylated STAT3 after GH stimulation in fibroblasts from children with short stature and apparent GH insensitivity and control children of normal stature.

Methods: We studied 21 prepubertal children with a mean age of 9.2 ± 0.7 years, short stature (height −2.6 ± 0.2 SDS), decreased growth velocity (< p10), a GH response > 10 ng/mL to two stimulation tests and decreased serum IGF-I/IGFBP3 levels (−1 SDS), and 31 control children of normal stature with a mean age of 6.1 ± 0.6 years. In fibroblast cultures obtained from a skin biopsy, stimulated with GH at a concentration of 200 ng/ml (15, 30 and 60 minutes), the levels of total and phosphorylated STAT3 were analyzed in the cytoplasmic and nuclear fractions.

Results:

In our group of short patients with apparent GH insensitivity, we observed a reduction in total nuclear STAT3 levels, an increase in phosphorylated citoplasmatic STAT3, and a lower nuclear/cytoplasmatic STAT3 phosphorylated ratio compared to the control children.

Conclusion: These results suggest that some children with short stature and apparent GH insensitivity exhibit a reduction in the nuclear translocation of their total and phosphorylated STAT3, which may be related to their growth retardation.

9

D. Cabral, L. Montenegro, A. Leal, D. Damiani, B. Mendonça, I. Arnhold, A. Jorge

Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM 42, Hospital das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil

Background: Recently, IGF-1 insensitivity caused by IGF1R mutations was identified in children born SGA.

Objectives: Describe two novel IGF1R mutations.

Patients and methods: Twenty-five children born SGA without postnatal catch-up growth who present IGF-1 SDS levels above mean were selected. Peripheral blood leukocytes were isolated followed by total RNA extraction and cDNA synthesis. The IGF1R cDNA was amplified using specific primers followed by direct sequencing.

Results: Two nonconservative missense mutations in IGF1R were identified in 25 SGA children (8%) in heterozygous state: a nucleotide substitution (G > A) at the first nucleotide of codon 6 (exon 1) replacing glycine by arginine (p.G6R) and a nucleotide substitution (C > T) at the first nucleotide of codon 510 (exon 7) replacing arginine by tryptophan (p.R510W). G6 residue is located in signal peptide region of pro-IGF-1R, whereas R510 residue located near of the first disulfide bond between the two alfa-subunits of the IGF-1R protein at cysteine 543. Both affected children were born SGA after an uneventful pregnancy (born weight SDS = -2.5) and presented poor postnatal growth: height SDS −3.3 and −2.3 at 7.4 and 5.8 years of age for children with G6R and R510W mutations, respectively. Patient carrying R510W has microcephaly. Both patients presented normal basal and stimulated GH levels, whereas IGF-1 SDS levels in the upper normal limit.

Conclusion: Two novel mutations (p.G6R and p.R510W) in IGF1R are described, and demonstrate the importance of IGF1R mutations in children with pre and postnatal growth retardation.

10
A Need for Harmonization of Analytical Methodologies in the Newborn Screening for Congenital Adrenal Hiperplasia

G. Dratler, A. Ribas, V. Herzovich, J. Lazzati, M. Rivarola, E. Chaler, A. Belgorosky

Laboratorio de Pesquisa Neonatal, Servicio de Endocrinología, Hospital de Pediatria JP Garran, Buenos Aires, Argentina

Introduction: The experience with UMELISA 17OHP Neo of TecnoSUMA (TS) in a National Newborn Screening Program in Argentina revealed discrepancies with other methods and the necessity to evaluate its cut off values.

Objectives: To analyze differences with methodology DELFIA and to evaluate their causal factors.

Materials and Methods: a) Linear correlation between TS and DELFIA was made in 312 blood samples in filter paper. b) Samples from an International Quality Program (CDC, Atlanta, USA) for low, medium and high levels of 17OHP were evaluated. c) In order to corroborate the concentration of TS and DELFIA standards as a cause of the discrepancies, they were assayed by ELISA Siemens Enzaplante Neo 17αOHP and HPLC and the results were compared with the content informed by the manufacturers. TS results were corrected...
Results: TS method shows higher values than DELFIA, with the following linear correlation \(TS = 33.7589 + 1.4571 \times \text{DELFIA} \); \(r = 0.5007 \); \(p < 0.00001 \). Bias % of the quality controls were for DELFIA: 21.4% (CV% interassay: 14.3%) whereas for TS: 62.4% (CV% interassay: 21.2%). The Recovery (%) of DELFIA and TS standards according to HPLC tests were 100.6% and 55.8%, respectively; coincident to the recoveries obtained by ELISA: 90.1% and 56.3%.

Conclusions: The collected data are consistent with an underestimation in the calibration of the standards. Its adjustment tends to harmonize the differences, but a bias persists in a way which is not imputable to the calibration of the standards.

11

Frequency of Germline Mutations In Pheochromocytoma Associated Familial Syndromes in an Argentine Population

G. Sansó, A. Vieites, G. Levin, M. Barontini
CEDIE-CONICET, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina

More than 25% of pheochromocytomas are hereditary. The inherited pheo-associated syndromes are MEN 2 on account of mutations of the ret gene, VHL on account of mutation of the vhl gene and pheochromocytoma-paraganglioma (Pheo-pgl) syndromes caused by mutations of of the SDHB, SDHD and SDHC genes. The aim of this work was to evaluate the frequency of germ-line mutations in the genes coding for the vhl, ret and SDH (B y D) in a sample of 72 Argentine index patients (4–71 y) having the clinical features of pheo associated familial syndromes. The diagnosis was supported by clinical, biochemical (VMA, E, NE and Calcitonin) imaging (I131 MIBG, TAC, RMN, PET) and confirmed at surgery. We have identified 34 MEN 2A 47%, 5 CMTF 6.9%, 12 MEN 2B 16.6%, 12 VHL 16.6%, 2 SDHD 2.7% and 7 SDHB 9.7%. We have been able to find 12 sequence variants in MEN 2, 3 in SDHB, 2 in SDHD and 10 in VHL. The prevalence of the VHL was high in the young population (under 21y, 10/12), in contrast with the adult population that showed the greatest prevalence of MEN 2 (38/50). Remarkably the sequence variant g300-304delCCTCA was present in high frequency in a group of SDHB patients with malignant pheos being this the only correlation genotype-phenotype that we found. This study show the mutations found in an argentine population and contributes to four novel germ-line vhl mutations and two novel germ-line SDHB mutations.

12

Differentiated Thyroid Cancer (DTC): Presentation and Follow Up in Children And Adolescents

P. Papendieck, D. Braslavsky, A. Chiesa, M. Venara, L. Gruñeiro-Papendieck
División de Endocrinología, CEDIE-CONICET, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina

DTC is the most frequent endocrine malignancy in childhood. Presentation and long term follow up vary from that described for adults. To report the clinical findings, treatment and follow-up of pediatric DTC, we analyzed the clinical charts and anatomopathological reports of 41 patients with DTC (8males)(6.2−19.5 years)(35 pubertal) followed up for 0.16 −13.1 years at the Endocrinology Unit between 6/88 and 6/08.

Results: 31 patients consulted with a thyroid mass, 7 had also palpable cervical lymph nodes (CLN) and 10 multinodular goiter. Tumor size by palpation was < 1cm: 2, 1−4cm: 28 and > 4cm: 10. All underwent total thyroidectomy; 3(7.3%) presented recurrent laryngeal nerve paralysis and 8(20%) permanent hypoparathyroidism.17 had CLN involvement, 4 distant LN metastases (MTS) and 4 lung MTS. FNAB (n:35) was diagnostic in 37.1% and suspicious in 40%. Anatomopathological studies revealed 36 papillary and 5 follicular carcinomas, 23 multifocal and 19 with extracapsular extension. All underwent postoperative radioiodine remnant ablation and l-thyroxin suppressive therapy. 6 recurred: 3 regional LN, 1 mediastinal LN, 1 in lung and 1 indeterminate location. At 5 years of follow up (n:20) 70% had no evidence of disease.

In children DTC mainly presented as a palpable single thyroid mass (31/41) had already LN involvement (56%) and was predominantly papilar (36/41) with multifocal location (56%) and pulmonary MTS (12%). FNAB was a useful tool for diagnosis and therapeutic approach allowed eradication of the disease in 70% of patients followed up for 5 years.

13

The Influence of the 737/738 IGF-I Polymorphism on Birth Size, Postnatal Growth, Plasma IGF-I and Cardio-Metabolic Risk in Early Adult Life

A. Espiñeira , F. Fernandes-Rosa, A. Bueno, R. de Souza, M. de Castro, M. Barbieri, H. Bettiol, S. Antonini
Faculdade de Medicina de Ribeirao Preto-USP, Sao Paulo, Brasil

Background: subjects born small (SGA) or large for gestational age (LGA) are at higher cardio-metabolic risk in adult life. It is controversial if IGF-I gene polymorphisms, including the microsatellite 737/738 modify this risk by influencing birth size, plasma IGF-I or postnatal growth. OBJECTIVE: to assess the influence of 737/738
IGF-I genotype on prenatal and postnatal growth and cardio-metabolic outcome in early adult life. METHODS: case-control study nested within a cohort of 2063 subjects followed since birth to 25 years old. Subjects: SGA (n = 199), LGA (n = 117) and 398 appropriate for gestational age (AGA). At birth, 9 and 25 years old: anthropometric measurements. At 25 years: Blood pressure (BP), fasting glycemia, insulinemia, HOMA, lipids and plasma IGF-I. 737/738 IGF-I polymorphism was genotyped by PCR-Genescan.

Results: the common alleles with 19 and 20 CA repeats were considered wild types (WT). Homozygosity for variant alleles (VT) was less frequent in AGA than in SGA (p = 0.04) or LGA subjects (p = 0.002). Non-carriers of the WT alleles presented higher probability to born LGA (OR: 3.2; 95% CI: 1.5−6.9) than AGA. 737/738 IGF-I was not associated with symmetrical or asymmetrical birth size, postnatal catch-up in SGA or catch-down in LGA. SGA carrying WT alleles presented lower BP than homozygous for VT (117/70 vs 124/73; p = 0.01). LGA homozygous for WT presented higher BP (120/73 vs 114/67 mmHg; p = 0.05) and lower plasma IGF-I than VT carriers (p = 0.03). 737/738 IGF-I polymorphism had no effect on others phenotypic traits.

Conclusions: Our data originally demonstrate that the 737/738 IGF-I polymorphism is associated with birth size, plasma IGF-I and BP in adult life.

14
Hereditary Disease in Patients Younger than 20 Years of Age with “Apparently” Sporadic Pheochromocytoma
A. Vieites, G. Sansó, G. Levin, M. Barontini
Hospital de Niños Dr. Ricardo Gutiérrez, CEDIE-CONICET, Buenos Aires, Argentina

Pheochromocytomas (pheos) are catecholamine secreting tumors. Familial pheos are found more often than traditionally assumed. This may be due to associations to Multiple Endocrine Neoplasia 2, von Hippel Lindau disease, and neurofibromatosis type 1. Mutations of the gene coding for the D, B and C subunits of succinate dehydrogenase (SDHD, SDHB and SDHC) are known. We evaluated 36 patients with pheo younger than 20 y of age to assess the presence of familiar disease. 12/36 were relatives or had clinical features of familial disease. In the remaining 24 patients molecular studies were performed. We identified germ-line mutations in 15 patients (62.5%); 11 (45.8%) had vhl mutations and 4 (16.6%) of SDHB. The clinical outcome was favourable in 17/24 (follow between 1−40 y), without recurrence or metastasis (10 showed mutations of vhl, 1 with SDHB mutations and 6 were negative). 1 patient died (negative) and 5 were unfavourable: 3 with metastases (1 SDHB, 2 negative), 1 with local recurrences (SDHB) and 1 with hemangiomias (vhl). 2 patients were lost to follow up. The high prevalence of mutations found in these young patients, mainly in the vhl gene, underscores the importance of the molecular studies to better characterize this condition in the patients and other family members and may improve the outcome.

15
The Influence of Adiponectin Gene (APM1) Polymorphisms on Birth Size and Cardio-Metabolic Risk in Early Adult Life
A. Bueno, A. Espíñeira, F. Fernandes-Rosa, M. Foss, A. Moreira, M. Barbier, H. Bettiol, S. Antonini
Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Sao Paulo, Brasil

Introduction: Adiponectin (APM1) regulates insulin action. Single nucleotide polymorphisms (SNPs) in APM1 gene may modulate adiponectinemia. However, it is not known if APM1 SNPs are associated with pre and postnatal growth and cardio-metabolic risk in adult life.

Objective: to evaluate the influence of APM1 SNPs on fetal and postnatal growth and cardio-metabolic risk.

Subjects and Methods: case-control study nested within a cohort of 2063 subjects followed since birth to 25 years old.

Subjects: SGA (n = 198), LGA (n = 116) and 398 appropriate for gestational age (AGA). At birth and 25 years old: anthropometric assessments. At 25 years: Blood pressure (BP), glycemia, insulinemia, HOMA-IR, lipids and plasma APM1 (RIA). Four APM1 SNPs (c.-11391G > A, c.-11377C > G, c.45T > G and c.276G > T) were genotyped by RT-PCR.

Results: in adult life, adiponectinemia was associated with birth size (SGA vs AGA: 9.1[5] vs 11.2[5] μg/mL; p < 0.001). Homozygosity of the c.-11391A allele was more frequent in LGA than AGA (p = 0.04). Subjects carrying this genotype have increased probability to born LGA than AGA (OR: 4.1; CI 95%: 1.1−16.7; p = 0.03). In LGA subjects the c.-11391A allele was associated with higher adiponectinemia (p = 0.03). Also in LGA group, homozygous carriers of c.276T allele had significant lower insulin (3.4[2.7] vs 7[6.3] μUI/m; p = 0.01) and HOMA-IR (1.5[1.4] vs 0.7[0.6]; p = 0.01). In AGA group: homozygous carriers of the c.-11377G allele had increased diastolic BP (82[7] vs 69[8] mmHg; p = 0.02). Carriers of the c.45G allele had lower DBP (67[4.9] vs 71[9]; p = 0.03). Carriers of the c.276T allele presented higher glycemia (84[9] vs 81[8]; p = 0.008). In the SGA groups APM1 SNPs were not associated with metabolic features.

Conclusion: polymorphisms in APM1 gene may influence prenatal growth and are associated with cardio-metabolic features, including adiponectinemia, in young healthy adults.
16 The −202 A Allele of Insulin-Like Growth Factor Binding Protein-3 (IGFBP3) Promoter Polymorphism is Associated with Higher IGFBP-3 Serum Levels and Better Growth Hormone Response to Growth Hormone (GH) Treatment in Patients with Severe GH Deficiency

E. Costalonga, S. Antonini, G. Guerra-Junior, B. Mendonca, I. Arnhold, A. Jorge
Unidade de Endocrinologia do Desenvolvimento, LIM/42, Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Pediatria da Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Departamento de Pediatria da Faculdade de Medicina da Universidade de Campinas, Sao Paulo, Brazil

Introduction: Genetic factors that influence the response to hGH therapy remain mostly unknown. To date, only growth hormone receptor gene has been investigated. The aim of the present study was to assess the influence of an IGFBP3 promoter region polymorphism (−202 A/C) (rs2854744), previously correlated with circulating levels of this protein, on IGFBP-3 levels and growth response to hGH therapy in children with severe GHD.

Methods: −202 A/C IGFBP3 genotype was assed in 71 children with severe GHD (peak GH levels < 3.3 μg/l at 2 GH provocative tests) who remained prepubertal during the first year of therapy and who have been treated with a mean GH dose of 32μg/kg/d. GHD children were compared according first year of hGH treatment.

Results: Clinical and laboratory data at start of treatment were similar among genotype groups. Despite similar hGH doses, patients homozygous for the A allele presented higher IGFBP-3 SDS levels and higher mean GV in the first year of hGH therapy than patients with AC or CC genotypes (1st year GV: AA = 13.0 ± 2.1 cm/y, AC = 11.4 ± 2.5 cm/y and CC = 10.8 ± 1.9 cm/y; p = 0.028 for AA vs. AC or CC genotypes (1st year GV: AA = 13.0 ± 2.1 cm/y, AC = 11.4 ± 2.5 cm/y and CC = 10.8 ± 1.9 cm/y; p = 0.028 for AA vs. AC and p = 0.003 for AA vs. CC). The influence of genotype on GV was independent of other clinical variables, as demonstrated by multiple linear regression analyses.

Conclusions: The −202 A allele of IGFBP3 promoter region is associated with increased IGFBP-3 levels and growth velocity during the first year of hGH treatment in prepubertal GHD children.

17 Idiopathic GH Neurosecretory Dysfunction (GHNSD): A Possible Cause of GH Deficiency (GHD)

A. Freire, A. Keselman, A. Chiesa, G. Ropelato, I. Bergadá
División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina

GHNSD was described by Spiliotis et al in 1984. Since then, this entity was reported in patients after cranial radiation therapy. However, the diagnosis of idiopathic GHNSD has been questioned. We describe 3 prepubertal patients aged 12, 7.8 and 6.3 years with height of −4.2, −3.3 and −4.3 SDS, respectively and delay in bone age from 3 to 5 years. Target height was normal, without a history of constitutional delay. Psychosocial deprivation was excluded. Arginine-clonidine tests showed a maximum GH peak of 10.8, 16.8 and 17.1 ng/ml and serum IGF1 (SDS) levels were −4.64, −2.3 and −2.8 respectively.

An increase of IGF-1 > 60% in the GH generation tests excluded GH insensitivity. A twelve-hour 20 minutes sampling nocturnal pulsatile GH secretion was performed and compared with normal prepubertal controls (C).

Spontaneous mean ± SD GH levels (ng/ml) were 0.69 ± 0.3, 1.3 ± 0.8 and 1.4 ± 0.8 vs 4.4 ± 1.4 in C. Pulse amplitude were 0.6 ± 0.39, 1.9 ± 2.1 and 3.4 ± 0.37 vs 8.5 ± 4.3 in C. Max GH were 1.21, 4.2 and 4.6 vs 18.2 ± 9.5 in C. All these values were significantly lower than C, while the number of pulses were not.

GH treatment at a mean dose of 0.23 mg/kg/wk resulted in growth acceleration at year one from a baseline of 4.1, 4.0, and 3.2 cm/yr, to 10.1, 10.2 and 7.6 cm/yr, respectively.

These data show that idiopathic GHNSD should be considered when other causes of GHD are excluded even without a history of cranial irradiation. The 12-hour spontaneous nocturnal GH sampling is an alternative test to delineate who might benefit from GH treatment.

18 Congenital Hyperthyroidism Caused by Mutation in the Transcellular Domain of the Thyrotropin Receptor

J. Basaure, M. Hernandez, K. Sotomayo, S. Costagliola, V. Merica
Hospital Padre Hurtado, Instituto de Investigación Materno-Infantil, Universidad de Chile, Santiago, Chile

Introduction: The gain-of-function mutations in the TSH receptor(TSHR) have been identified as the molecular basis for congenital and acquired forms of non autoimmune hyperthyroidism. We described a preterm male newborn (32 weeks), appropriate to gestational age. His mother an adolescent (14 years old) was diagnosed with hyperthyroidism when she was 11 years old, antibodies to TSHR (TRAb) were no available. She had irregular adherence to propylthiouracil therapy. The newborn developed hyperthyroidism at 27 days of life and treatment with propylthiouracil was started with good response. He did not attended controls between 6 to 13 months. At month 13 the hyperthyroidism persisted.

Method: Serum TSH, T4L and T3 to the patient and familiar group were measured. TSHR antibodies and thyroid CT-scan were also performed to the patient. Genomic DNA was extracted from peripheral lymphocytes using standard procedures. The entire coding region of exon 10 was amplified from the patient and his mother.

The gain-of-function mutations in the TSH receptor(TSHR) have been identified as the molecular basis for congenital and acquired forms of non autoimmune hyperthyroidism. We described a preterm male newborn (32 weeks), appropriate to gestational age. His mother an adolescent (14 years old) was diagnosed with hyperthyroidism when she was 11 years old, antibodies to TSHR (TRAb) were no available. She had irregular adherence to propylthiouracil therapy. The newborn developed hyperthyroidism at 27 days of life and treatment with propylthiouracil was started with good response. He did not attended controls between 6 to 13 months. At month 13 the hyperthyroidism persisted.

Results: Hyperthyroidism was diagnosed in maternal grandfather (43 years old) and maternal aunt (Age = 6 months). A new mutation in TM1 of the TSHr gene resulting in the substitution of Arginine for Lysine was found. The receptor expression on the cell surface and its sensitivity were normal, but there the basal cAMP was increased, which could explain the phenotype of the mutation.
Conclusion: We report a new mutation in TM1 of TSHR causing a gain of function. Patients harboring the same mutation of the TSHr gene may show wide phenotypic variability as congenital and acquired hyperthyroidism.

19 Twins at Risk: A False Negative Screening Result for Congenital Hypothyroidism
M. Arriazu, D. Pretz, A. Gonzalez Sanguinetti, L. Adler, D. Natta
Hospital Privado de Comunidad, Mar Del Plata, Argentina

Among the many published studies of neonatal hypothyroidism screening, it is surprising to find but a few reports of false negative results. The majority of hypothyroid mono or dizygotic twin pairs, found to have hypothyroidism on screening have been discordant for the disease. We present a female patient who was diagnosed at 49 days of age with the classic signs of severe hypothyroidism, who had a neonatal TSH level of 5 mIU/ml. She was the second of a same-sex presumably monozygotic twin pair. Born at 36 weeks, her birth weight was 2280 g and length 43.5 cm. The first abnormal signs were noticed by the parents at 20 days of age. She was examined by several pediatricians who relied on the normal TSH report and discarded the diagnosis. At 48 postnatal days she was admitted because of an episode of apnea and typical signs of hypothyroidism were found. TSH level was > 75 mIU/ml. Her twin sister had normal TSH levels neonatally and at 50 days. Maternal thyroid autoantibodies were negative. Thyroid gammagraphic scan disclosed an hypoplastic gland. The etiology of this occurrence might be attributed to an epigenetic phenomenon, an early embryonic somatic mutation or other postzygotic event. The explanation could be admixture of fetal blood between the twins, and protection by the normally functioning thyroid gland of her sister during pregnancy and the first postnatal days. It is now recommended re-testing all twin pairs at 14 days of age; and to reassert pediatricians in their clinical suspicion of hypothyroidism, in spite of an initially normal screening report.

20 Insulin Sensitivity in Patients with Turner’s Syndrome
A. Arcari, A. Keselman, M. Ballerini, M. Gryngarten, M. Ropelato, I. Bergadá, L. Gruñeiro-Papendieck, M. Escobar
División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina

Turner’s Syndrome (TS) is associated with decreased insulin sensitivity (IS) and increased risk of Type II Diabetes (DBT). The aim of the present study was to determine the prevalence of impaired of IS in girls with TS in relation to Tanner stage (T), GH therapy and sexual steroid replacement. Fifty three patients were studied. We analyzed body mass index (BMI), glycemia, (G) insulin (I), by ICMA, area under curve (AUC) of G and I with an oral glucose tolerance test (OGTT) and assessed insulin sensitivity by HOMA, QUICKI, G/I index. Patients were divided into groups according T and GH therapy: A1: (n = 8) T I without GH, A2 (n = 10) TH-IV without GH, B1 (n = 17) T I with GH, B2 (n = 6) T II-IV with GH and C (n = 12) TV with previous GH treatment. Groups were compared with prepubertal (PP, n = 46) and pubertal (P, n = 59) controls. No patients had Type II DBT, only one patient with morbid obesity (C) had G intolerance. GH patients (B1 and B2) had lower BMI than patients without GH, (A1, p = 0.01 and A2, p = 0.04). Prepubertal patients with GH therapy (B1) had higher I and lower G/I index than controls (PP), p < 0.05. There were no differences among pubertal patients with and without GH, when compared to controls. BMI had positive correlations with I SDS, QUICKI, HOMA, G/I index and AUC I.

Conclusion: GH therapy induces alteration in IS, in prepubertal girls with TS but this treatment does not increase the degree of insulin resistance normally observed during puberty.

21 Usefulness of GnRH Infusion Test in the Diagnosis of Boys with Delayed Puberty
R. Grinspon, S. Gottlieb, R. Rey, A. Keselman, A. Martinez, M. Ballerini, H. Doméne, M. Ropelato
Centro de Investigaciones Endocrinológicas, División de Endocrinología, Hospital de Niños R. Gutiérrez, Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina

Differential diagnosis between hypogonadotropic hypogonadism (HH) and constitutional delay of puberty in boys who present with delayed or arrested puberty is controversial.

The aim of this study was to evaluate the usefulness of GnRH infusion test to predict HH in boys with delayed/arrested puberty. Thirty-five boys (10.8−24.8 yr), (30 with absence of and 5 with arrested puberty) were submitted to IV GnRH infusion (0.83 ug/min for 120 min).

LH and FSH (IFMA) were determined at 0, 15, 30, 45, 60 and 120 min. Final diagnosis of complete HH (n = 17) was done with testes < 4 ml at 18 yr, and partial HH (n = 11) when testes enlargement started but remained arrested for at least 1 yr or did not reach 15 ml. ROC curves were used to determine optimal cut-off points.

LH peak occurred between 15 and 120 min, and FSH peak at 120 min. LH peak < 5.8 IU/L showed a 95.8 % positive predictive value (PPV) for HH, with 82% sensitivity (S) and 85% specificity (Sp); the positive likelihood ratio (LR +) was 5.8. FSH peak < 4.6 IU/L showed similar results. Interestingly, basal FSH < 1.15 IU/L had a 100% PPV for HH, (S:64.3%, Sp:100%). Peak LH > 5.8 IU/L and FSH > 4.6 IU/L in the same patient detected constitutional delay of puberty with 85.7% S and 89.2% Sp; LR + was 8.

In conclusion, in a boy with delayed or arrested puberty, a GnRH infusion test is useful to confirm HH when peak of LH and/or FSH < cut off. When both peak values are above cut-off in the same patient, constitutional delay of puberty can be diagnosed with high accuracy. Finally, basal FSH < 1.15 IU/L confirms HH and no further test is necessary.
Assessment of Testicular Function Using Direct and Indirect Markers of Sertoli Cell in Prepubertal Boys with Bilateral Cryptorchidism

R. Grinspon, L. Andreone, I. Bergadá, S. Gottlieb, N. Loreti, P. Bedecarrás, M. Ropelato, R. Rey, S. Campo
Centro de Investigaciones Endocrinológicas (CEDIECONICET) y División de Endocrinología, Hospital de Niños R. Gutiérrez, y Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina

In childhood, testicular function can be evaluated studying the tubular compartment. The aim of this study was to assess tubular function of bilaterally cryptorchid patients using direct and indirect markers of Sertoli cell function.

We evaluated serum levels of anti-Müllerian Hormone (AMH), inhibin B (InhB) and inhibin subunit Pro-αC by ELISA, and FSH by IFMA in 70 prepubertal boys (5 ± 3.6 years) with bilateral cryptorchidism before surgery.

AMH, InhB and FSH were normal in 13 patients (19%, 4.7 ± 3.3 yr). AMH and InhB were below normal in 42 patients showing primary tubular damage, with elevated FSH in 13 patients (19%, 4.4 ± 3.0 yr) and normal FSH in 29 patients (41%, 5.0 ± 3.6 yr). Within this group, non detectable InhB coexisted with low Pro-αC in 12 cases and with low AMH in 14. Probably, when tubular damage is B expression is affected more readily. Correlation between AMH|Severe, inhibin and InhB was significant (Spearman ρ 0.73, P < 0.0001, n = 70), indicating high concordance for tubular assessment. However, AMH was low and InhB was normal in 14 patients (20%, 4.6 ± 3 yr). AMH may detect a testicular damage earlier than inhibin B or may present more false positive results.

Conclusions: Serum InhB and AMH show a significant concordance as tubular damage markers in patients with bilateral cryptorchidism. When tubular damage is severe, the coexistence of non detectable InhB with detectable AMH reflects the different regulation between these two Sertoli cell peptides.

GHRHR Mutations in Patients with Isolated GH Deficiency (IGHD)

Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil

Introduction: In familial IGHD cases, mutations in the GH release hormone receptor gene (GHRHR) are probably the most common cause. However, in most patients with sporadic IGHD, the molecular etiology is unknown.

Objective: To evaluate the presence of GHRHR mutations in patients with isolated or familial IGHD.

Patients and Methods: Among all GHD patients, we analyzed those presenting severe IGHD (GH peak < 5ng/mL-IFMA), topic posterior pituitary and absence of mutation or gross deletion in GH-1 gene. The entire GHRHR gene coding (13 exons) and boundary regions as well as the proximal promoter (450 bp) were automated sequenced.

Results: Ten patients (9 males), including 4 familial cases (2 families), were studied. Chronological and bone age at diagnosis were 7.8 (4.5) and 4.8 (3.3) years, respectively. All patients presented severe short stature (height SDS: −4.4 [-2.3 to −5.9]) and reduced growth velocity (3.2 [1.6] cm/yr). GH peaks after insulin test (ITT) and L-DOPA were 2 (1.3) and 2.3 (1.6) ng/mL, respectively. Anterior pituitary size was reduced in 7 patients (70%). Growth velocity in the first year of rGH treatment was 10.9 (2.2) cm/yr. Mutations in GHRHR gene were found in the 4 familial cases and in 1 sporadic IGHD patient. In 3 brothers we observed the previously not described compound heterozygous mutation p.[L144H]+[A176V]. One patient with ancestors from the northeast region of Brazil and family history of GHD harbored the c.57 + 1G > A (IVS1 + 1G > A). In a patient with sporadic IGHD the heterozygous p. L144H mutation was observed. Several single nucleotide polymorphisms (SNPs) in coding and intronic regions of the GHRHR gene were found: p.A57T, p.M422T, c.154-10T > C, c.1104 + 20C > T and c.975-26G > A. In the promoter region, the SNPs c.-261C > T and c.-235C > T were observed in 90% and 60% of the patients, respectively. The frequencies of all SNPs were similar among patients and normal subjects. There was no phenotypical difference among patients with or without GHRHR gene mutations.

Conclusion: Mutations in the GHRHR gene are common in familial IGHD and infrequent in sporadic cases.

New Steroidogenic Factor 1 (SF1) Gene Mutation. An Extreme Phenotypic Variation was Present in Two Siblings with a 46 XY Disorder of Sexual Development (DSD), and Normal Adrenal Function

M. Costanzo1, M. Warman1, R. Marino1, J. Galeano1, M. Ciaccio1, E. Berensztein1, M. Bailez2, M. Rivarola1, A. Belgorosky1
1Servicio de Endocrinología. 2Servicio de Cirugía, Hospital de Pediatria J.P.Garrahan, Buenos Aires, Argentina

A broad phenotypic spectrum of gonadal, adrenal and Müller duct differentiation has been described in 46XY DSD patients with SF1 mutations. However, functional activity of the adult testis remains unknown. We report two siblings with a 46XY DSD with different degree of masculinization and preserved adrenal function. The index case was first seen at 3 month of chronological age (CA) with perineal hypospadias, 2.5 cm phallus and palpable gonads in scrotum. Basal levels (B) of LH (1.1MIU/ml) and FSH (4.6MIU/ml) were within normal range, and testosterone (T) increased to 2.48 ng/ml in response to hCG. Male sex was assigned and currently, at 18 years
old, he presents normal adult male development, testicular volume (TV) of 10 cc, without evidence of müllerian remnants (MR) on ultrasound, B levels of LH, FSH and T within normal range for age and sex, (LH 2.82, FSH 6.48, T 4.3, resp.) and normal adrenal function. The sister was evaluated at 9 month of CA with pronounced underweight, BMI (BMI)-matched controls according to clinical, anthropometric and preventive thyroidectomy in children at risk to develop MTC. In the present study, we report the results of prophylactic thyroidectomy in 38 carriers of RET mutations performed at ages from 17m to 21y (median 10y; males:22, females:16). Twenty seven carriers belonged to 15 families with MEN 2A and 11 to 3 families with FMTC. Level 2 mutations were harboured by 38 carriers: 36 in exon 11 codon 634, and 2 in exon 11 codon 611. Histology was normal only in a 4-year-old carrier. The other 37 carriers had C-cell hyperplasia and in 30 of them MTC was present. MTC was unilateral in 13 and bilateral in 17. In 4/17 bilateral, multifocal MTC was found and one of them presented regional lymph node metastases. Preoperative basal calcitonin levels were increased in 16/38 children: in 3/9 younger than 5 y, in 3/15 with ages between 5 and 10 y and in 10/16 of 11 to 21y. In all patients under 10 y calcitonin levels dropped to normal after surgery while they remained high in 3/10 patients older than 10 y. All patients are alive followed up between 1 and 25 y post thyroidectomy. No patient presented any other associated endocrine neoplasia indicating that MTC is the first manifestation of MEN2A in juvenile carriers. The results of this study emphasize the importance of early screening and preventive thyroidectomy in children at risk to develop MTC.

26
Multiple endocrine neoplasia type 2 (MEN2) is an inherited disease caused by germline mutations in the RET proto-oncogen. Carriers of RET mutations are at risk for developing medular thyroid carcinoma (MTC) at young age. Detection of mutations of the RET proto-oncogen provides the basis for prophylactic thyroidectomy in children. In the present study, we report the results of prophyactic thyroidectomy in 38 carriers of RET mutations performed at ages from 17m to 21 y (median 10y; males:22, females:16). Twenty seven carriers belonged to 15 families with MEN 2A and 11 to 3 families with FMTC. Level 2 mutations were harboured by 38 carriers: 36 in exon 11 codon 634, and 2 in exon 11 codon 611. Histology was normal only in a 4-year-old carrier. The other 37 carriers had C-cell hyperplasia and in 30 of them MTC was present. MTC was unilateral in 13 and bilateral in 17. In 4/17 bilateral, multifocal MTC was found and one of them presented regional lymph node metastases. Preoperative basal calcitonin levels were increased in 16/38 children: in 3/9 younger than 5 y, in 3/15 with ages between 5 and 10 y and in 10/16 of 11 to 21y. In all patients under 10 y calcitonin levels dropped to normal after surgery while they remained high in 3/10 patients older than 10 y. All patients are alive followed up between 1 and 25 y post thyroidectomy. No patient presented any other associated endocrine neoplasia indicating that MTC is the first manifestation of MEN2A in juvenile carriers. The results of this study emphasize the importance of early screening and preventive thyroidectomy in children at risk to develop MTC.

27
Genotyping of a Polymorphism in the Promoter Region of IGBP3 Gene Might Improve the Utility of IGFBP-3 Measurement in the Differential Diagnosis of Children with Short Stature
P. Scaglia, H. Doméné, A. Martinez, A. Keselman, V. Pipman, V. Bengoley, L. Karabatas, M. Ropelato, M. Ballerini, J. Heinrich, H. Jasper
Centro de Investigaciones Endocrinológicas (CEDIE-CONICET), División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina

Variability of IGFBP-3 levels is related to polymorphic variants in the promoter region of IGBP3 gene.
Aims of this study: to determine this effect in normal (N), idiopathic short stature (ISS), and GHD children and to evaluate if genotyping the IGFBP3 gene may improve the efficiency of IGFBP3 measurement for the differential diagnosis of short stature.
We enrolled 190 N (4.9–16.6 y), 89 ISS (3.3–17.5 y) and 25 GHD (3.1–17.6 y). IGFBP-3 levels were determined by IRMA, and the −202 A/C SNP by RFLP. Statistical analysis: One-way ANOVA (A) followed by Tukey’s and linear trend (LT) tests and ROC curves. IGFBP-3 levels (SDS) were significantly different among −202 IGFBP-3 genotypes, both in N [AA: 0.35 ± 0.17 (mean ± sem), AC: 0.12 ± 0.11, CC: −0.29 ± 0.11; A: p = 0.0037; AA > CC, p < 0.01; AC > CC, p < 0.05; LT: p = 0.0031] and ISS children (AA: −0.01 ± 0.30, AC: −0.83 ± 0.15, CC: −1.04 ± 0.21; A: p = 0.0112; AA > CC, p < 0.01, AA > AC, p < 0.05; LT: p = 0.0032). In GHD children there was a non-significant trend (AA: −1.82 ± 0.37, AC: −2.08 ± 0.43, CC: −2.73 ± 0.50).

By ROC analysis, with a cut-off levels of −1.68 SDS, the diagnostic efficiency (DE) of IGFBP-3 measurement for GHD diagnosis was 80.7%, sensitivity (Se) 84.3% and specificity (Sp) 68.0%; while using genotype-specific cut-off levels (-1.17, −1.71 and −2.68 SDS for AA, AC, and CC, respectively) DE, Se, and Sp improved to 85.1%, 89.9%, and 68.0% respectively.

This study extends the association of IGFBP-3 levels with −202 IGFBP3 gene polymorphism to ISS, and shows that its determination partially improves the differential diagnosis of short stature.

28 Metabolism and Function of High-Density Lipoproteins (HDL) in Children With Metabolic Syndrome (MS)
L. Garcia, B. Anaya, M. Juarez, O. Pérez
Hospital Infantil de México Federico Gómez, Instituto Nacional de Cardiología Dr. Ignacio Chávez, México

It has been suggested that the anti-atherogenic potential of HDL depends on its structure and its antioxidant function. Apolipoproteins and particularly paraoxonase (PON1) seems to play a principal role by inhibition of the inflammatory response contributing to the prevention of the oxidation of the low-density lipoproteins (LDL). METHODS. The subclasses, size and anti-oxidant activity of the HDL were analyzed in 30 obese children with metabolic syndrome (MS) before the age of 14 years and 30 healthy children. The plasmatic HDL were separated on the basis of their size by electrophoresis in poliacrilamide gradient 4−30% in native conditions. The subclasses of lipoproteins were determined by optical densitometry. The anti-oxidant activity of HDL was determined by means of arilesterase activity through the method of Zeller modified by Kitchen. RESULTS. The activity of paraoxonase measured as the concentration of the arilestearase activity was lower in the group of children with MS (P < 0.05) Patients with MS has less concentrations of HDL2b (p < 0.05). HDL3b and 3c were higher in patients with MS (p < 0.05). CONCLUSIONS. In our study we find a lower anti-oxidant activity of HDL in children with MS compared with healthy children. We also find a higher proportion of HDL2b and small HDL in this group. Our findings suggest that probably HDL2b are the involved in the prevention of endothelial disfunction observed in early stages in children with metabolic syndrome.

29 Nocturnal Concentrations of Free T3 (FT3) and Free T4 (FT4) Increase after the Administration of the IGF-I/IGFBP-3 Complex (Iplex) in Small for Gestational Age Prepubertal Children
G. Iñiguez, R. Roman, A. Avila, D. Gunn, F. Cassoria
IDIMI, Facultad de Medicina, Universidad de Chile, Santiago, Chile

Introduction: It is not establish whether IGF-I and/or IGFBP-3 regulates circulating concentrations of thyroids hormones in humans.

Objective: We determined the effect of IGF-I/IGFBP-3 complex over FT3 and FT4 concentrations in small for gestational age children (SGA).

Methods: We studied 15 prepubertal SGA (7F/8M; 7.6 ± 0.5 years). We studied the FT3 (pg/ml) and FT4 (ng/dl) concentrations before and after the sc administration of 1 mg/kg of the IGF-I/IGFBP-3 complex (Iplex). The samples for measurement of FT3 and FT4 (basal and post Iplex) were obtained at 23:00; 03:00 and 07:00 hrs. We also determined serum IGF-I and IGFBP-3 at 23:00 and 03:00 hrs (post Iplex).

Results: Four hours after Iplex the IGF-I and IGFBP-3 concentrations increased from 225 ± 21 to 469 ± 32 ng/ml and from 2.7 ± 0.2 to 3.3 ± 0.3 mg/L, respectively (mean ± SEM, p < 0.05) and as it shows in the table the FT3 and FT4 concentrations increased 8 hours after the Iplex administration compared with the basal condition.

<table>
<thead>
<tr>
<th></th>
<th>23:00 hours</th>
<th>03:00 hours</th>
<th>07:00 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3L basal</td>
<td>3.1 ± 0.2</td>
<td>2.9 ± 0.1</td>
<td>2.7 ± 0.2</td>
</tr>
<tr>
<td>T3L Iplex</td>
<td>3.0 ± 0.3</td>
<td>2.8 ± 0.2</td>
<td>3.5 ± 0.3*</td>
</tr>
<tr>
<td>T4L basal</td>
<td>1.5 ± 0.1</td>
<td>1.5 ± 0.1</td>
<td>1.4 ± 0.1</td>
</tr>
<tr>
<td>T4L Iplex</td>
<td>1.6 ± 0.1</td>
<td>1.5 ± 0.1</td>
<td>1.7 ± 0.1*</td>
</tr>
</tbody>
</table>

Conclusion: These findings indicate that the IGF-I/IGFBP-3 complex administration increases FT3 and FT4 concentrations in prepubertal SGA children, suggesting that IGF-I and/or IGFBP-3 may have a positive feed back effect over the secretion and/or synthesis of thyroid hormones in humans.

Supported by Fondecyt 1060784.
Complete GH1 Gene Deletion Detected by Multiplex Ligation Dependent Probe Amplification (MLPA) in Patients with Congenital Growth Hormone Deficiency Type IA

M. Franca, E. Costalonga, M. Nishi, L. Carvalho, B. Mendonga, J. Arnhold, A. Jorge
Unidade de Endocrinologia do Desenvolvimento da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil

Introduction: Most patients with congenital isolated growth hormone deficiency (IGHD) type IA have pituitary GH gene (GH1) deletions ranging from 6.7 kb to 45 kb. Southern blot and RFLP have commonly been used for molecular diagnosis. Multiplex Ligation dependent Probe Amplification (MLPA) is a new, high resolution and simple method to detect copy number variation in target genes.

Objective: To validate MLPA as a tool to identify GH1 deletion.

Methods: 4 patients with IGHD type IA with homozygous GH1 deletion (3 patients with 6.7kb deletion and 1 with 7.6 kb deletion) diagnosed by restriction endonuclease analysis were studied by MLPA. This method consists in the sequence-specific probe hybridization to genomic DNA followed by amplification of hybridized probes with fluorescent primers. PCR products were resolved in capillary electrophoresis and analyzed by GeneScan. Salsa MLPA Kit P216 (MRC-Holland), which contains one synthetic control probe and four specific GH1 probes locate at introns 1, exon 3, 4 and 5, were used.

Results: MLPA analysis disclosed GH1 intron 1, exon 3 and exon 4 peaks were completely lost, indicating homozygous deletions of this gene in all patients. However, regarding GH1 exon 5 probe, a 50% reduction of peak height was observed, indicating an unspecific hybridization. MLPA was unable to distinguish patients with GH1 gene deletion of 6.7 kb or 7.6 kb.

Conclusion: MLPA successfully identify GH1 deletion and can be a feasible platform to detect deletion in patients with IGHD type IA.

Molecular and Biochemical Components of Insulin Resistance in Girls with Hyperandrogenic States

Departamento de Endocrinología Pediátrica, Hospital Infantil de México, Departamento de Genética del Hospital General de México, Hospital Infantil de México, Departamento de Bioquímica, CINVESTAV, México

Background: Previous adult studies report that insulin signaling abnormalities in the muscle of patients with hyperandrogenism can predict glucose intolerance and type 2 diabetes. The aim of the current study was to describe these abnormalities in adolescents.

Methods: We analyzed girls with clinical/biochemical hyperandrogenism. Patients were classified as (1) hyperandrogenic (N = 7) if they had a history of precocious pubarche or hirsutism and biochemical hyperandrogenism, and (2) those with Polycystic Ovary Syndrome (PCOS) (N = 13) according to Rotterdam criteria. Analysis of anthropometric (Body mass index [BMI], Waist circumference [WC]) and laboratory data (fasting insulin, OGTT, lipid profile, blood pressure) were analyzed. Muscle biopsies were obtained from vasti externe and IRS-1, IRS-2. GLUT-4 expression was measured by RT-PCR in vivo and after culture. Biopsies from non-obese non-hyperandrogenic adolescents were used as controls (N = 6).

Results: IRS-1 and IRS-2 expression was significantly different in cases versus controls (p = 0.01). HDL-cholesterol was significantly lower in hyperandrogenic compared to PCOS girls (p = 0.01). There were no significant differences between both hyperandrogenism groups in the prevalence of insulin resistance indexes and metabolic syndrome.
Conclusions: Overexpression of IRS-1 and IRS-2 was persistently detected in the overall sample of hyperandrogenic girls compared to controls. Impaired insulin action involves posttranslational modification of signaling molecules, most likely including altered phosphorylation of IRS-1 and IRS-2 subs.

33 Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency: Insulin Resistance in Women with Final Height

G. Schnaider-Rezek, S. Valente Lemos-Marín, M. Matias, G. Guerra-Júnior, L. Dsouza-Li

Unidade da Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, UNICAMP, Brasil

Introduction: Studies on congenital adrenal hyperplasia due to 21-hydroxylase deficiency indicates a higher prevalence of obesity, visceral adiposity, insulin resistance and hyperandrogenism, when compared to reference population.

Objective: evaluate the incidence of insulin resistance and dyslipidemia in post pubertal women with congenital adrenal hyperplasia followed at Pediatrics Outpatients clinics at UNICAMP.

Material and Methods: weight, stature, blood pressure, insulin, glicemy, cholesterol, LDL, triglicerids and Homa IR.

Results: We evaluated 18 patients. The mean age was 2,81) and the mean height was 156 cm. Salt-wasting were observed ± 19,5 years (in 11 patients). There were no significant difference on final height, type of glucocoticoids used and biochemical values when comparing salt-wasting to those with no lost. The mean BMI was 23,2 Kg/m2, 12 patients with values lower than 25 (66,7%), 5 patients between 25–30 (27,8%) and 1 patient with a BMI higher than 30 (5,5%). Waist circumference was adequate in 15 patients (83,3%) and high in 3 (16,7%). From 15 observed patients, 11 (73%) showed insulin resistance (elevated HOMA IR compared to BMI). Total cholesterol was normal for age in 13 women (72,2%) and high in 5 (27,8%), LDL was adequate in all patients and HDL was low in 4 (22,2%). Triglicerids were normal in 16 (88,9%) and elevated in 2 (11,1%).

Conclusion: Post pubertal patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency seems to have more insulin resistance than reference population studies independent of their BMI.

34 Polycystic Ovary Morphology (PCOM) Does not Affect Ovulatory Function in Healthy Postmenarcheal Adolescents

F. Eyzaguirre¹, G. Iníguez², P. López³, C. Villarroel³, A. Ávila², F. Pérez-Braovo³, F. Cassorla¹, E. Codner¹

¹Instituto de Investigaciones Materno-Infantil, Facultad de Medicina, Universidad de Chile, ²Lab. Epidemiología Genética, Instituto de Nutrición y Tecnología de los alimentos (INTA), Santiago, Chile

Aims: To evaluate the frequency of PCOM in healthy adolescents at two and three years after menarche (PM) and its association with ovarian function and body composition.

Methods: We performed a prospective study of 21 healthy adolescents (13.8 ± 0.8 years) with ultrasound(US), body composition (DEXA) and hormonal study (leuprolide test) 2 and 3 years PM. PCOM was diagnosed according to the Rotterdam criteria. All the girls were followed during 6 consecutive months with salivary and urinary samples for measurement of progestrone (PG) and LH, respectively, obtained during the 13,18,23 and 28th days of each cycle.

Results: First and second US showed PCOM in 38.1 and 33.3%, respectively; four and three girls showed disappearance and development of PCOM, respectively. There were lower basal FSH (4.3 ± 0.9 vs. 5.5 ± 0.9mUI/ml; p = 0.02) and higher 24hr estradiol levels (253 ± 96 vs.149 ± 43pg/ml; p = 0.01), were exhibited in PCOM + and PCOM- group, respectively. The stim 17OHPG, testosterone levels and body composition were similar in both groups.

Regression model showed no influence of PCOM over frequency of ovulatory cycles.

Conclusions: Presence of PCOM is a frequent and inconstant finding in healthy adolescents and does not appear to affect ovarian function or body composition. This study suggests that PCOM should be considered a physiological condition during early adolescence. (FONDECYT 1050452)

Table

<table>
<thead>
<tr>
<th>PCOM + (n=8)</th>
<th>PCOM – (n=13)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle duration (ays)</td>
<td>31.1 ± 6.3</td>
<td>32.0 ± 7.6</td>
</tr>
<tr>
<td>Ovulatory cicles by PG / LH / both (%)</td>
<td>44.4 / 47.2 / 25</td>
<td>37.7 / 44.3 / 27.9</td>
</tr>
</tbody>
</table>
Effects of Prenatal and Postnatal Androgen Exposition on Gender Identity and Sexual Orientation in Adult Females with Classical 21-Hydroxylase Deficiency

I. Marlene, B. Mendonca, G. Madureira, L. Gomes, E. Veduguez, I. Arnhold, T. Bachega

Laboratório de Hormônios e Genética Molecular LIM/42, Disc de Endocrinologia, Hospital das Clínicas, FMUSP, FAPESP, São Paulo, Brazil

Females with classical 21-hydroxylase deficiency (CAH) are exposed to prenatal and postnatal androgen excess, and it has been observed a high frequency of homosexuality and bisexuality. However, it remained controversial which period of androgen exposition is critical for the development of these disorders.

Objective: to correlate the gender identity and sexual orientation in CAH adult females with prenatal and postnatal androgen excess. Casuistic: 16 females with salt wasting (SW), 20 with simple virilizing (SV) and 3 females with SV form reared as males.

Methods: House Tree and Person Test and Bleger’s questionnaire were performed. To evaluate the prenatal androgen exposition: it was determined the Prader degree (P) of external genitalia virilization in 38 cases (P2 n = 6, P3 n = 24, P4 n = 7, P5 n = 1 case). To evaluate the postnatal exposition: patients were classified according to hormonal control during growth periods: good-normal (n = 20) and poor-high (n = 29) testosterone levels. SV patients were analyzed according to the diagnosis ages, before and after 2 years.

Results: all patients with good control presented female gender identity despite Prader score and age at diagnosis. Four SV patients with P3, late diagnosis and poor control presented male gender identity and changed to male social sex at adulthood. Homosexual orientation was found in 2 SW (P3 and good control) and in 4 SV patients (P3 and bad control). Three SV patients assigned as males presented gender and sexual orientation adequate to male sex. None of patients with P4 and P5 presented disorder of gender identity or sexual orientation.

Conclusions: prolonged postnatal androgen exposition was the unique factor associated with male gender identity or homosexual sexual orientation in CAH females. In this series, we did not observe an influence of prenatal androgen exposition.

Menstrual Cycle Abnormalities in Adolescents with Type 1 Diabetes Mellitus Under Intensified Insulin Treatment

X. Gaete1, M. Vivanco1, F. Eyzaguirre2, N. Unanue3, P. Lopez2, K. Rhumie3, F. Cassorla2, E. Codner2

1Hosp. Roberto del Río, 2IDIMI, Facultad de Medicina, U. de Chile, 3Hospital Sótero del Río, Chile

Objective: To evaluate whether patients with DMI treated with intensive insulin treatment have menstrual irregularities and to determine its relationship with metabolic control and insulin doses.

Design: Prospective controlled study.

Method: We studied 57 adolescents with DMI treated with > three daily doses of insulin were recruited, and 56 healthy adolescent school girls (C). Both groups were paired by gynecological age and body mass index (BMI). A prospective record of menses was obtained for 6 consecutive months. The average inter-menstrual period (Av) and variability of cycles determined by the variation coefficient (VC), and we determined the frequency of amenorrhea (> 90 d), oligomenorrhea (> 45 d) and polymenorrhea (< 25 d). The effect of BMI, HbA1c, daily insulin dose on Av and VC were determined by linear stepwise regression.

Results: DM1 adolescents showed a higher Av, VC and prevalence of oligomenorrhea and amenorrhea (Table). HbA1c (B = 5.3; P < 0.001) was the only determining factor on Av and that the daily insulin dose (B = 12.5; p = 0.04) was the only determining factor on VC and DM1.

Conclusion: Adolescents with DMI, even under intensified insulin treatment, show a higher frequency of menstrual irregularities. The abnormalities in the menses are related to higher insulin doses and deteriorating metabolic control (FONDECYT 1050452)
Clinical Biochemical and Molecular Characterization of Six Pediatric Patients with Thyroid Hormone Resistance (THR)

División de Endocrinología Hospital de Niños R. Gutiérrez, Endocrinología Hospital Fernández, Cátedra de Genética y Biología Molecular, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina

Introduction: THR is a disorder characterized by elevated serum levels of thyroid hormones, normal or slightly increased TSH levels that respond to TRH and goiter without clinical hyperthyroidism.

Objective: To describe the clinical, biochemical and molecular findings of 6 children with THR aged 0.52 to 12.7 years from 5 non related families.

Results: patients consulted for hyperthyroidism treated with antithyroid drugs (2), goiter(2), TSH resistance to LT4 treatment (1) and familiar screening for THR(1) 4/5 had goiter, 3/6 taquicardia and 3/5 attention deficit disorder. Diagnostic hormone levels Median (range) were T4 20 μg/dl (12.9−24.4); FreeT4 3.3 ng/dl (2.4−5.6); T3 319 ng/dl (222−425) Basal TSH 2.8 mU/l (1−15.2) and after TRH administration 7.6 to > 100 mU/l. Administration of T3 200ug/m2 didn’t supress neither basal nor post TRH/TSH levels. SHbg levels were increased. In response to androgens, suggesting that gly lengths other than 23 (codes gly), numbers other than 23GGC exhibit lower transactivation (gln) appear to be inversely related to AR function. In the case of GGC androgen repeats(17 ± 1 vs 17 ± 0) were not statistically different in cases and controls. The combined analysis of CAG/GGC, however, showed a significantly higher prevalence of the most androgen-sensitive combinations(< 18CAG + 17/17GGC and < 14CAG + 17/18GGC) in the girls with hypertrichosis (36% vs 14%, P = 0.042, Mann-Whitney test) compared to controls.

Conclusions: Hypertrichotic girls may exhibit AR(s) with enhanced sensitivity, facilitating the growth of their body hair. The association of GCC17 + CAG < 18 repeats in some girls with hypertrichosis may increase the sensitivity of their AR(s).

Androgen Receptor CAG/GGC Repeats in Prepubertal Girls with Hypertrichosis

M. Hernandez, A. Castro, E. Castro-Nallar, A. Avila, G. Iñiguez, F. Cassorla
Instituto de Investigaciones Materno Infantil (IDIMI), Universidad de Chile, Santiago, Chile

The transactivation domain of the androgen receptor(AR) includes 2 polymorphic aminoacid repeats. The number of CAG repeats(codes gln) appear to be inversely related to AR function. In the case of GCC (codes glyy), numbers other than 23GGC exhibit lower transactivation in response to androgens, suggesting that gly lengths other than 23 may be related to AR function. Our aim was to quantify the number of CAG/GGC repeats in the AR gene of prepubertal girls with hypertrichosis matched to normal control girls.

Prevalence and Prognosis of Euthyroid Sick Syndrome (ESS) in Pediatrics

C. Godoy1,2, C. Piñera1,2, M. Yunge1,2, R. Villena2, M. Pedraza1, C. Vega1
1Clinica Davila, 2Hospital Exequiel Gonzalez Cortes, Departamento Pediatria y Cirugia Infantil Sur, Universidad de Chile, Chile

Introduction: ESS is a transitory variety of thyroid alterations in patients with no thyroid pathologies. It is in discussion if it constitutes a favorable response to stress, or is only a marker of severity of the underlying disease. There is no consensus if it needs treatment. In spite of its high prevalence in adults, in children its prevalence and prognosis is unknown.

Objectives: To establish the prevalence of ESS in critically ill pediatric patients and its association with prognosis of these patients.

Materials and Method: Prospective, analytical, multicenter study in patients from ICU of HEGC and CD which needed invasive mechanical ventilation(IMV) for more than 24 hrs. Excluded: previous thyroid pathlogy, use of medication that interfered with thyroid metabolism. TSH, freeT4, T3 and reverseT3(rT3) were measured and PRISM score (Pediatric Risk of Mortality) was calculated. Patients were classified according to their mortality risk in low(< 5%), moderate (5−15%) and high(> 15%). Days in ICU, IMV and use of vasoactivated drugs(VAD) were registrated.

Results: n = 67;6%males; median age:2,1y(0,1−15), 71% presented ESS. From these, 67% were ESS type I(lowT3; N fT4; N or low TSH; N high rT3). 27% were ESS II(lowT3; low rT4; lowTSH; high rT3). 4% with all hormones low. There were no differences in the prevalence of ESS in relation to PRISM. Patients with and without ESS had similar days in ICU, of IMV and use of VAD.

Conclusions and Discussion: ESS is very frequent in pediatrics. In this study, different to what is seen in adults, SEE had no relation with a higher risk of mortality, days in ICU, IMV or VAD.
Role of Intravenous Desmopressin Test in Etiological Diagnosis of Congenital Nephrogenic Diabetes Insipidus

H. de Menezes Filho, C. Battistin, T. Della Manna, H. Kuperman, V. Dichtchekenian, N. Setian, D. Damiani

Instituto de Ciência do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil

Introduction: Congenital nephrogenic diabetes insipidus (CNDI) is a disease of autosomal or X-linked inheritance trait caused by mutations of antidiuretic hormone (ADH) V2 receptor gene or of aquaporin-2 gene, respectively. The interaction of intravenous (IV) desmopressin (synthetic analogous of ADH) with V2 endothelial receptors stimulates the secretion of von Willebrand factor (VWF). The VWF may be quantitatively evaluated by ristocetin cofactor activity (RCA).

Objective: Evaluation of the RCA after desmopressin in two infant boys with CNDI.

Patients and methods: Infant1, 14-months-old, presented with fever of unknown origin, failure to thrive, polyuria, hypernatremia (151mEq/L), high plasma osmolality (330mOsm/kg) and hyposthenuria (160mOsm/kg). Infant2, 12-months-old, presented with vomiting, failure to thrive, polyuria, hypernatremia (156mEq/L), high plasma osmolality (309mOsm/kg) and hyposthenuria (160mOsm/kg). Both were successfully treated with intranasal desmopressin.

In both patients the RCA increased after the stimulus with IV desmopressin (patient1: from 170 to 232%; patient2: from 98 to 136%).

Results: In both patients the RCA increased after the stimulus with IV desmopressin (patient1: from 170 to 232%; patient2: from 98 to 136%).

Conclusion: The increase of RCA after IV desmopressin in these patients with CNDI indicates that the function of V2 ADH receptor is normal, suggesting that their disease was caused by mutations of aquaporin-2 gene.

Differential Diagnosis of Poliuria and Polydipsia: Clinical and Laboratory Variations of the Water Deprivation Test (WDT) in Pediatrics

M. Troiano, A. Chiesa, A. Keselman, M. Ropelato, I. Bergadá

División de Endocrinología, Hospital de Niños R. Gutiérrez, Buenos Aires, Argentina

Diagnosis of Central Diabetes Insipidus (CDI) is based on clinical and laboratory studies. Although the WDT is generally used for a definite diagnosis, scarce information exists in children regarding its clinical and laboratory findings. To clarify these issues we studied 31 children (aged 7.25 ± 5.0 years) that underwent a WDT to rule out CDI. Weight and urine output were measured hourly. Initial and final plasma and urinary osmolality (freezing point), and plasma ADH (extracted RIA) were measured. Final plasma ADH was plotted on a nomogram related to serum osmolality in a normal population.

The positive predictive value of a final U/P Osm ratio (U/P Osm ≤ 1.5) towards an inadequate final plasma ADH was 95%, and the negative predictive value of 72%, with a diagnostic efficiency of 83%. So, patients were grouped according to the f U/P Osm in: Group A (n = 20) ratio < 1.5, and B (n = 11) > 1.5. Patients from group A had a significant decrement of weight (p < 0.05) and higher urine output (p < 0.006) than group B. Increment of pADH after the test was significantly lower in group A (0.24 ± 1 pg/ml) vs group B (2.47 ± 2.8 pg/ml), p = 0.015.

In summary, a decrement in body weight as well as the urine output during this test are useful information to define pediatric patients with a real incapacity to concentrate the urine. Moreover, the measuring of plasma ADH enabled us to establish that a cut-off f U/P Osm ratio ≤ 1.5 is likely associated with inadequate plasma ADH secretion, resulting in the best tool for the differential diagnosis in children with polyuria and polydipsia.

Secular Change of Puberal Development in Chilean Schoolage: More Duration and Sexual Dysmorphism in Stature

R. Burrows, S. Ceballos, M. Burgueño, S. Muzzo

INTA, Universidad de Chile, Santiago, Chile

Background: In Chile obesity quadrupled between 1985 and 2000. To study Aims: To study changes in puberty of school-aged during this period and its relationship with height and weight variations. Material and Methods: In two of the Metropolitan Region school-ages, collected between 1985 and 1987 years (m-1986) and another between the 2000 and 2002 years (m-2001), were selected girls between 7 and 15 years (1820 and 935, respectively) and boys between 9 and 15 years (1504 and 774 respectively). The weight, height and BMI were assessed. The breast (B) in girls and genital (G) development in men, were classified according Tanner (T) stage.

Results: There was an association (p < 0.0001) between puberty degree and generation in both sexes. The m-2001 has a lower average age of start puberty than m-1986 (10.6 ± 1.3 and 10.1 ± 1.1 in female and 13.1 ± 1.1 and 12.3 ± 0.8 years in male, respectively) without differences in T 4 and 5. BMI was higher in the m-2001 in both sexes. The m-2001 males, are higher at all Tanner stages; however, m-2001 females have a smaller stature in B2 and B3, without differences in T 4 and 5. BMI was higher in the m-2001 in both sexes. The m-2001 males, are higher at all Tanner stages; however, m-2001 females have a smaller stature in B2 and B3, without differences in B4 and B5 with m-1986 females.

Conclusion: There is a trend towards earlier start puberty associated with a greater time of puberty and body weight in both sexes. The highest stature in m-2001 males only, gives an account of a sexlinked trend of puberty and body weight variation.
Differences in the Intracellular Signal Transduction Components For IGF-IR in Human Term Placentas from Small, Adequate and Large for Gestational Age New Borns

G. Iñiguez, J. Rivera, F. Argandoña, E. Kakarieka, L. Marquez, C. Johnson, F. Cassorla
IDIMI, Facultad de Medicina, Universidad de Chile, Santiago, Chile

Introduction: IGF-I and its receptor (IGF-IR) participate in both pre and postnatal growth. The human placenta expresses the mRNA and the protein for IGF-I and IGF-IR and their intracellular signal components (IRS-1, ERK y AKT).

Objective: To Study the protein contents of IGF-IR, IRS-1, ERK y AKT in human full term placentas from SGA, AGA and LGA newborns.

Methods: We collected 16 SGA, 16 AGA and 16 LGA placentas. We determined the protein contents by Western blot in the fetal and maternal side of the placentas. Results are shown in the table as mean ± SEM: The differences were studied by ANOVA.

Conclusion: The higher contents of IRS-I in LGA placentas and the ERK42/44 in SGA placentas suggest that these IGF-IR signal transduction proteins may influence fetal growth. (FONDECYT 1061082)

Mutations G183S in 5α-Reductase Deficiency Type II in Patients from Bahia/Brasil and their Association with Ancestry Markers (Alu): Is a Mutation Responsible for Founders Effects?

P Brito, M. Toralles, D. Rios, S. Sousa, M. de Mello, G. Guerra-Junior
Hospital Universitario Prof. Edgar Santos, Universidade Federal da Bahia, Brasil

Introduction: The enzyme steroid 5α-reductase type 2 is the responsible for conversion of testosterone to dihydrotestosterone, which is one of the keys steps during the embryonic differentiation of the external males genitals. Mutations and deletions in 5α-reductase type 2 gene (SRD5A2) were attributable to an almost complete lack of this enzyme activity. A single base substitution of adenine (AGT) for guanine (GGT) at exon 3 resulted in a serine replacement of glycine at amino acid 183 (G183S). These mutations were previously detected in Brazilian patients from mixed African-European ancestry and in the Dominican Republic. In this study, we check the association of mutations G183S with ancestry markers Alu to determine the possible existence of founder gene effect.

Methods: Six affected subjects were studied. Theirs DNA were amplified for PCR-multiplex. Thirty one Alu-insertion polymorphisms were used because they are neutral genetic markers of identical descent and present high frequency diversity between European, African and Amerindians populations.

Results: Analysis of Alu-insertion polymorphism revealed a African, Amerindians and Europeans contribution of 33,41%, 38% and 28,78%, respectively.

Conclusions: The results demonstrated that the African, Amerindians and Europeans contribution for mutations G183S are relatively similar. The mutations could be origins in any tree parents populations Studies with news polymorphisms are been carried out to confirm or not the possibly common ancestry of gen.

Usefulness of the Waist Circumference and Waist/Height Ratio in Infants for Metabolic Risk Assessment

J. Llano, M. Llano Garcia, Grupo Medesco
Instituto de Crecimiento y Desarrollo Humanos, Bogotá, Colombia

Introduction: The abdominal obesity is linked to an increased incidence of Metabolic Syndrome and DM2 in youth and adults, and the incidence of premature deaths. The WHO recommends the use of BMI as a diagnostic tool for obesity, simple but nonspecific in the diagnosis of cardiovascular risk factors and fatty tissue location.

Aim: Using waist circumference (WC) and the Waist/Height ratio W/H- r) as a method of screening in healthy school population, in
order to define our cut off point and normal values and compare them with U.S. standards (NHANES).

Material and Methods: A cross sectional analysis in 1147 boys and 1254 girls in ages between 2 to 19 years, in 3 socioeconomic class, including anthropometric measurements for data by sex and age.

Results: 1) The WC increases with age but with a less gain compared with the NHANES group, 2) In late adolescence there is a stable trend in WC, 3) The W/H - r tends to decline gradually with age in men, between girls 12 to 19 years no significant changes were noted. 4) The W/H - r with values greater than 0.53 to 0.54 differ significantly from the NHANES findings where there is increased at the end of adolescence (p < 0.01), suggesting a lower frequency of abdominal obesity in our population, 5) There is a lower percentage of children with WC above the 90 percentile American unlike American children (p < 0.05). 6) Values greater than 0.54 are outside the normal range and 7) The difference percentile for our group of children against the U.S. was significant different (p < 0.001).

Conclusions: To our knowledge this is the first study conducted in our country to determine normal values for these variables, founding significant differences compared to American studies.

46

Effect of GH Replacement on Lipid Profile, CRP-hs and the Carotid Intima-Media Thickness (IMT) in Children and Adolescents with GH Deficiency (GHD)

A. Ladeia, M. Magnavita, A. Couto-Silva, R. Vale, J. Reis-Neto, L. Adan

Escola Bahiana de Medicina e Saude Publica, Centro de Diabetes e Endocrinologia do Estado da Bahia (CEDEBA) e Depto de Pediatria, FMB-UFBA Salvador, Bahia, Brasil

GHD is associated with unfavorable lipid profile and precocious atherogenic process. Low levels of IGF-1 are associated with the carotid IMT and dyslipidemia.

Aim: to evaluate the effect of GH replacement on the lipid profile, CRP-hs and the carotid IMT in children and adolescents with certain GHD.

Methods: this intervention study evaluated the lipid profile, the IMT of 7 patients (mean age 13.7 ± 4.8 yr), before and six months after the onset of GH treatment. The clinical and laboratory evaluation included weight and height (SD), BMI, total cholesterol, (TC), HDL, LDL, triglycerides (TG), non-HDL cholesterol (nHDL-C), the TG/HDL ratio and IGF-1. The IMT evaluation was performed by two blinded observers (r = 0.90, p < 0.001). The median was used for pre and post intervention comparisons (Wilcoxon test, p < 0.05).

Associations were analyzed by the Spearman correlation test.

Results: After 6 months of treatment, there was a tendency towards reduction of TC (203.5 mg/dl vs. 173 mg/dl, p = 0.12), LDL (129.2 mg/dl vs. 101.1 mg/dl, p = 0.17), CRP-hs (1.3 mg/L vs. 0.46 mg/L, p = 0.06) and IMT (0.46 mm vs. 0.44 mm, p = 0.13). No change was noted in other lipid variables. Before treatment, a negative correlation was found between IGF-1 and CRP-hs (r = -0.82, p = 0.08) and after treatment, between IGF-1 and TC (r = -0.94, p = 0.03), LDL (r = -0.88, p = 0.04) and nHDL-C (r = -0.94, p = 0.035).

Conclusion: The correlations observed between IGF-1 and lipid variables and subclinical inflammation suggest that GH deficiency is a prothrombotic state, that can be modified by GH replacement.

Posters

47

Relative Bioavailability of Two Drug Products of Somatropin Obtained from the Milk of Transgenic Cows and from Bacterial Culture

J. Farias², E. Feleder¹, E. Gonzalez², K. Halabe¹, M. Criscuolo³, I. Bergada², R.A. Diez²

¹FP Clinical Pharma S.A., ²Bio Sidus S.A., ³Centro de Diagnóstico Molecular, Buenos Aires, Argentina

Biohormon® (Bio Sidus S. A., Buenos Aires, Argentina) is the first GH produced in transgenic cloned cows that carry the human GH gene allowing them to express the hormone in their milk. The relative bioavailability of Biohormon® was assessed vs. the reference product HHT®, (somatropin from E. coli, Bio Sidus S. A.), upon approval by an independent ethics committee and the National Regulatory Agency (ANMAT). We compared the time-concentration profiles of somatropin in 24 healthy adult volunteers. The study was performed as a randomized, two-period, two-sequence crossover design after inhibition of endogenous GH secretion with lanreotide. After the subsequent administration of 1.33 mg of each formulation, somatropin was analyzed. Serum GH was measured by a chemiluminescent assay (ImmuliteNR) and as a marker of biological activity serum IGF-I was assessed by IRMA. Safety was assessed by clinical and laboratory parameters and by the production of antibodies against GH. Pharmacokinetic parameters were analyzed with Winnonlin (Pharsight Corporation, Mountain View, CA, USA). The test/reference ratios of AUC, AUCLast and Cmax, were 106.4 (CI90% 100.2−112.9); 105.3 (CI90% 99.1−111.8) and 105.49 (CI90% 92.6−120.1), respectively. No serious adverse events were reported and no GH antibodies were detected. In summary, this study demonstrates that a single dose of Biohormon®, the first somatropin obtained from milk of transgenic mammals, is bioequivalent to the reference product HHT® according to standard criteria of pharmacokinetics.
Obesity and Associated Cardiovascular Risk Factors in Schoolchildren from Mérida, Venezuela

Unidad de Endocrinología, Unidad de Crecimiento y Desarrollo, Laboratorio de Neuroendocrinología, Universidad de Los Andes, Mérida, Venezuela

Introduction: It was proposed to investigate the frequency of obesity and associated cardiovascular risk factors in schoolchildren of our city, given its influence on the development of atherosclerosis.

Methods: Three hundred and fifty one children, second grade students (10% of the population) of 7.8 ± 0.6 years of age, 47.9% females and 52.1% males, from public and private institutes were studied. Surveys were applied, anthropometric measurements, blood pressure (BP) values and the determination of glucose and lipid profiles, using the system plus LDX (Cholestech) in capillary blood, were taken.

Results: It was observed that 9.7% of subjects had obesity (BMI > pc97) and 14% overweight (BMI pc 90–97). Overweight was more frequent in males (16.9% vs. 10.7%) and obesity in females (13.7% vs 6.0%) (p < 0.05). Normal-high BP (pc 90–97) was noted in 38.2% (p < 0.0001), dyslipidemia in 64.7% (p < 0.05) and metabolic syndrome in 44.1% (p < 0.0001) of the obese children, compared to 38.2% (p < 0.0001), dyslipidemia in 64.7% (p < 0.05) and metabolic syndrome in 44.1% (p < 0.0001) of the normal weight children, respectively.

Conclusion: There is evidence of a high frequency of cardiovascular risk factors associated with obesity among schoolchildren in our city. Strategies for its prevention must be implemented in the population.

Early Alteration of Glycaemic Regulation in Children with Family History of Metabolic Syndrome

Z. Guntsche, L. Colombi, S. Coll, S. Maniero, E. Ayub, F. Saravi, L. Cestino, E. Guntsche
Hospital Pediatrico Dr. Humberto J. Notti, Mendoza, Argentina

Introduction: Our aim was to evaluate beta-secretion in insulin-sensitive (IS) and insulin-resistant (IR) children with different fasting plasma glucose (FPG) levels.

Methods: We studied 56 obese patients and 52 siblings (6 – 16 year-old). We registered family history of metabolic syndrome (FH), BMI, waist, FPG, insulin, and calculated HOMA-R and HOMA-%B using Matthews’s model.

Results: Our HOMA-R cut-off value was 2.5 using ROC curves. IR group showed a proportional increase in HOMA-R and HOMA-%B (compensated IR) compared with IS group (IR: 4.2 ± 2.4 and 204.4 ± 126.3% vs IS: 1.4 ± 0.6 and 87.3 ± 42.2%, p < 0.0001), with a small increase in glycaemia: 5.4 ± 0.5 vs 5 ± 0.4 mmol/l, p < 0.01.

On the contrary, in the groups with glycaemia > 5 mmol/l (GII) and > 5.5 mmol/l (GIII), HOMA-%B did not change compared with the group with glycaemia < 5 mmol/l (GI) despite of an increment in HOMA-R (uncompensated IR) (GI: 1.86 ± 1.36 and 158 ± 94%, GII: 2.93 ± 2.16 and 148 ± 118%, GIII: 4.0 ± 3.1 and 139 ± 121%; p < 0.01 for HOMA-R, p > 0.05 for HOMA-%B). This fact was related to a greater frequency of positive FH and a greater frequency of obesity (p < 0.05).

Conclusion: a partially insufficient beta-secretion might exist early in obese children with FH of metabolic syndrome when FPG is still normal but greater than 5 mmol/l. These children should be closely followed for early intervention.
51

Pubertal Characteristic in Healthy Girls Small for Gestational Age (SGA) Compared with Girls Appropriate for Gestational Age (AGA)

M. Hernandez1, A. Martinez2, V. Peña3, A. Avila3, T. Salazar1, G. Iniguez1, V. Merica1

1Instituto de Investigaciones Materno Infantil (IDIMI), Universidad de Chile, 2Departamento de Pediatría Pontificia Universidad Católica de Chile, 3Servicio de Neonatología, Hospital Clínico San Borja Arriaran, Santiago, Chile

Introduction: There are limited and controversial data concerning pubertal characteristics in girls born SGA. The aim of the study was to characterize pubertal course longitudinally in matched healthy girls born either SGA or AGA recruited from the community.

Methods: Inclusion criteria were breast Tanner stage II and a normal BMI. Girls were followed during three years with a complete physical exam, bone age, pelvic ultrasound and gonadal hormones.

Results: Twenty five AGA and fifteen SGA have completed three years of follow up with a similar bone age (12.6 vs 13.1 years), delta bone age (3.1 vs 3.2 y), height (153±0.5 vs 151±0.7 cm) and delta height (19±3 vs 17±4 cm) in AGA vs SGA respectively (p = NS). 60% of the total group achieved breast Tanner 5 and 38% Tanner 4 at the third year. SGA girls advanced little earlier during the first two years. At the third year 52% of SGA vs 50% of AGA had Tanner 4 of pubic hair and 32% SGA vs 44% AGA were in Tanner 5 (p = NS). Ferriman score was not different between groups during follow up. There were no differences in the ovarian volume and number of follicles between AGA and SGA nor in the age of menarche 12y (AGA) vs 12.4y (SGA). In addition no difference was found when corrected by the maternal age of menarche. Basal levels of gonadotropins, estradiol and androgens were similar in both groups.

Conclusion: After three years of following SGA girls have shown slightly earlier development but not differences in internal genitalia or hormonal levels.

53

Terminal 15q26.1-pter Deletion Involving Monosomy of the IGF Receptor 1 (IGF1-R) in Two Boys with Severe Growth Retardation and Dystrophic Features

G. del Rey, V. Figueroa, M. Gutierrez, I. Fernandez, A. Boywitt, R. de Bellis, O. Brunetto, R. Coco

Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, Hospital de Niños “Ricardo Gutierrez”. Servicio de Endocrinología, Sección de Genética, Hospital de Niños “Pedro de Elizalde”, Instituto de Medicina Reproductiva-Fecunditas, Buenos Aires, Argentina

Introduction: The IGF1R(15q26.3) mediates IGFs action. Deletion 15qter encompassing IGF1R gene are associated with intrauterine and postnatal growth failure, microcephaly and mental retardation.

Methods: High resolution karyotype and FISH were performed to delineate the extent of del(15qter) in two patients with growth retardation. The effect of rhGH treatment was evaluated in one of them.

P2: A 5 m-old boy. At birth: W: 2500g, −1.8 SDS; H: 41 cm, −5.3 SDS. At physical exam: W: 4750g, −3.46 SDS; H: 53 cm, −5.56 SDS; OFC: 35 cm Pc < 3. Triangular facies, low-set ears, small hands and feet, clinodactyly, cryptorchidism, hypoplastic kidneys. Developmental delay. IGF1: 59ng/ml Pc 50; IGFBP3: 2.30 mcg/ml Pc 50. At 11 m of age the GH peak in response to arginine test was 5.3 ng/ml and GH therapy was started. At 6 yr-old showed SDS gain of H: 96.4 cm, −2.61 SDS; IGF1: 240 ng/ml, + 2.0 SDS and IGFBP3: 3.88 mcg/ml + 2.0 SDS. Family members showed short stature and MR.
Central Hypothyroidism (CH) in Patients with Prader Willi Syndrome (PWS) during the First 2 Years (Y) of Postnatal Life

E. Vaiani, V. Herzovich, S. Chertkoff, E. Chaler, M. Torrado, M. Rivarola, A. Belgorosky

1Servicio de Endocrinología, 2Servicio de Genética, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina

PWS is a genetic disorder with a well characterized phenotype, including hypothalamic dysfunction and intellectual deficiency. Features during the first 2 years (y) of life are general muscular hypotonia, feeding difficulties, and delay psychomotor development. Endocrine disorders such as growth hormone deficiency and hypogonadism have been described. However, in affected infants, thyroid function has not been well studied. The aim of this study was to analyze hypothalamic-pituitary-thyroid function during the first 2 y of life in PWS patients.

Design: 18 patients (11males, 7 females) with fulfilled clinical criteria for PWS diagnosis, confirmed by molecular analysis, were included. Mean ± SD chronological age (CA) was 1.07 ± 0.65 y, basal serum thyroid stimulating hormone (TSH), total thyroxine (tT4) and free (f) T4 levels were determined at PWS diagnosis. tT4, fT4, T3, TSH SDS were calculated from of normal reference values. T4 and /or fT4 SDSs higher than −1.3 (< 25 perc.) with TSH SDS lower than 1.5 were considered to defined CH.

Results: 16/18 PWS patients were diagnosed as having CH. Mean ± (SD) TSH and T3 levels were within normal reference values: 2.39 ± 1.6 μU/ml (-0.54 ± 1.24) and 1.59 ± 0.35 ng/ml (-0.28 ± 0.3 SDS) respectively. tT4: 6.81 ± 1.14 μg/ml (-2.2 ± 0.77 SDS) and fT4: 2.39 ± 1.6 μUI/ml (-0.54 ± 1.24) and 1.59 ± 0.35 ng/ml (-0.28 ± 0.3 SDS) were below the lower limit of the normal reference (25 perc.)

Conclusions: CH is a common feature in PWS patients during infancy. Pediatrician should be aware to evaluate CH in PWS, in this critical period for thyroid actions on neurological development.
The screening of CAH detects newborns (NB) affected with classic CAH to prevent salt-wasting dehydration crises and erroneous sex assignment. Measurement of 17-OH Progesterone (17OHP) is done early after birth. Cut-off levels (CL) have been correlated to birth weight, gestational age and hours of life. Recently, Todd S. Varness highlighted a reduced sensitivity in the detection of affected females. Our objective was to analyze if NB gender could influence both 17OHP values and recall rate (RR). GA: Term NB born between May 2005 and April 2007, n = 14,470; n = 7,163 were girls (49.5%). GAR: Infants with 17OHP levels above the CL recalled but healthy n = 181; n = 71 were girls (39.2%). GAN: Another subgroup of samples with 17OHP below CL, n = 2,854; n = 1,389 were girls (48.7%). Sex distribution (%) was evaluated: GAN vs. GA and GAR (proportions tests*). The RR for each sex was calculated in group GAR. Additionally, 17OHP levels in GAR and GAN were compared according to gender (t-test*). Measurements of 17OHP levels (nM) were done with DELFIA–PE. GA vs. GAN (sex: boys vs. girls = ns*). A different sex distribution was found comparing GAR vs. GAN (p < 0.05*). In GAR the RR = 0.99% in girls and RR = 1.5% in boys (p < 0.05*) and 17OHP levels (x ± sd) in girls: 26.1 ± 21.6 and 75.7 ± 49.8 in boys (p = 0.03†). In GAR 17OHP in girls: 10.6 ± 7.6 and 12.0 ± 7.9 in boys (p < 0.01†). A significant influence of gender on 17OHP levels and on RR was found in neonatal screening. More studies are necessary to justify and define a scheme of cutoff levels for 17OHP levels and on RR. GA vs. GAN (sex: boys vs. girls = ns*). The RR for each sex was calculated in group GAR. Additionally, 17OHP levels in GAR and GAN were compared according to gender (t-test*). Measurements of 17OHP levels (nM) were done with DELFIA–PE. GA vs. GAN (sex: boys vs. girls = ns*). A different sex distribution was found comparing GAR vs. GAN (p < 0.05*). In GAR the RR = 0.99% in girls and RR = 1.5% in boys (p < 0.05*) and 17OHP levels (x ± sd) in girls: 26.1 ± 21.6 and 75.7 ± 49.8 in boys (p = 0.03†). In GAR 17OHP in girls: 10.6 ± 7.6 and 12.0 ± 7.9 in boys (p < 0.01†). A significant influence of gender on 17OHP levels and on RR was found in neonatal screening. More studies are necessary to justify and define a scheme of cutoff levels adjusted to this parameter.
59

Case Report. CYP17A1 Gene Mutations Causing Congenital Adrenal Hyperplasia

L. Muñoz, N. Coyote, N. Garibay, N. Nájera, Y. Pastrana, G. Queipo
Hospital Infantil de México Federico Gómez, México

A 15yo female complained of primary amenorrhea and lack of pubertal development as well as persistent headaches and dizziness. She had a normal female phenotype, with no evidence of adrenarche or thelarche. Lymphocyte karyotype was 46 XY. Pelvic ultrasound showed no müllerian structures. A laparoscopy demonstrated the gonads to be bilaterally placed in the inguinal canal with respective vas deferens. A 7 cm vagina with a blind pouch end was found. No müllerian structures were seen. Pathology of resected gonads revealed testes with no epididymis, no vas deferens, with few Leydig cells and tubular atrophy. Hypertension was evident after surgical procedure. A 17-hydroxylase deficiency in a male genotype patient was then suspected by elevated levels of aldosterone (240 pg/ml), deoxycorticosterone (398 ng/dL), pregnenolone (300ng/dL) and progesterone (10.4ng/mL) with a high progesterone/17-hydroxyprogesterone ratio. Molecular study revealed a heterozygous component for the mutation K110X in exon 6 consisting of a transition from G to A at nucleotide 5555 which had not been previously described. Analysis of mutations revealed a heterozygous component for the mutation K110X in the mother and R362H in the father. We reported 2 novels mutations in the CYP17 gene in a Mexican adolescent.

60

Comparative Study of the Distribution of Vitamin D Receptor Polymorphic Sites in Turner Syndrome

E. López1, L. Silvano1, A. Pérez1, L. Muñoz2, G. Sobrero2, A. Boyanovsky2, N. Tolosa1, M. Miras2
1Catedra de Bioquímica y 2Biología Molecular, UNC, Córdoba, Argentina

Introduction: Turner syndrome (TS) patients usually suffer from secondary osteoporosis. This work is a comparative study about the distribution of different vitamin D receptor (VDR) polymorphisms in order to know if each one or within haplotypes, could be related to bone mineral density (BMD) or to any bone marker or parameter related to Ca and P metabolism in TS.

Methods: Amplification of DNA from 65 TS patients (15 ± 7 y.o) and 68 healthy individuals (17 ± 8 y.o) by PCR and digestion with Bsm I, Apa I and Taq I restriction enzymes. Determination of BMD and serum Ca, P, PTH, osteocalcin and β-crosslaps.

Results: Genotype distribution of Bsm I and Taq I sites was similar in TS patients and controls, whereas Apa I genotypes were differently distributed within the two groups (TS: AA 15%, Aa 63,3% vs controls: AA 41,1 %, Aa 37,5%; p < 0,01). Bsm I bb genotype was associated with lower BMD (p = 0,001) whereas the other genotypes did not show association with BMD. Bone markers and parameters were similar for all groups. We detected 17 haplotypes, BbAaTt being the most frequent.

Conclusion: bb genotype is associated with lower BMD in TS. By enlarging the number of patients, we could identify some haplotypes valuable as predictors of bone deterioration.
Lipid and Glicidic Profile in Turner Syndrome (TS) Patients Associated with Birth Weight and Length, and with Current Body Mass Index

A. Baldin, T. Fabbrini, A. Siviero-Michon, A. Spinola-Castro, S. Lemos-Marini, M. Baptista, L. D’Souza-Li, A. Maciel-Guerra, G. Guerra-Júnior

Unidade de Endocrinologia Pediátrica, Departamento de Pediatria, 1Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 2Universidade Federal de São Paulo (UNIFESP/EPM), Brasil

To analyze the association between lipid and glicidic profile and current body mass index (BMI) or birth weight and length in TS patients. Sixty-four TS patients not treated with growth hormone, aged 11−29,3yr (20,4 ± 5,3yr) underwent anthropometric evaluation (weight, height and current BMI), glucose, insulin (HOMA-IR), and lipid assessment (total cholesterol and tryglicerids). To evaluate the differences in lipid and glicidic profile between body weight (z < or = -2 or > -2 SDS), birth length (z < or = -2 or > -2 SDS) and current BMI (BMI < or = 25 or > 25 kg/m2) groups, Mann-Whitney test was performed, with a level of significance of 5%. Birth weight varied from 1,14 to 4,24 kg (z < or = -2, n = 22 and z > -2, n = 42), birth length from 41 to 52,5 cm (z < or = -2, n = 40 and z > -2, n = 24) and current BMI from 15,2 to 37,1 kg/m2 (BMI > 25, n = 14 and BMI < or = 25, n = 50). There were significant differences in HOMA-IR (p = 0,005), total cholesterol (p = 0,0001) and tryglicerids (p = 0,0001), in such a way that the highest values were in high BMI group, but not related to HOMA-IR (p = 0,188). We conclude that lipid and glicidic profile in TS adolescent and young adult patients were associated with both current BMI and birth weight and length.

An Unusual Presentation of Noonan Syndrome with Hypertrophic Myocardopathy: Mutation in the Gene RAF1

M. Arriazu, M. Roubicek, D. Llado, K. Gripp, S. Kirwin

Noonan syndrome is one of the non-chromosomal genetic syndromes most frequently associated with congenital heart defects. During the recent years a series of mutations were described as being common to various syndromes, such as Noonan, Costello, Cardio-facio-cutaneous (CFC) and Leopard syndromes. We report a patient of 1 year and 9 month of age, referred from cardiology for a phenotype compatible with this genetic syndrome, plus hypertrophic cardiomyopathy (HCM). He is the 4th child in the sibship, born at 33 weeks of gestation; severe polyhydramnios was present as well as gestational diabetes in the mother. Distinctive findings were: single umbilical artery, macrocephaly, prominent metopic suture, protruding eye globes, nystagmus, low-set earlobes, short stature, developmental delay and hypertrophic cardiomyopathy. Molecular studies did not disclose mutations in the coding regions of genes HRAS; BRAF; MEK1 and KRAS, previously reported in cases of Costello and CFC syndromes. In additional studies, no mutation was disclosed in the genes PTPN11 and SOS1. An heterozygous mutation was found in the gene RAF1 causing an aminoacid change of Ser257Leu. This mutation has been described in 2007 in Noonan as well as in Leopard syndromes. It is noteworthy that while about 19% of Noonan syndrome patients may have HCM, those carrying a mutation in this particular gene present HCM in 76% of cases. We suggest that mutations in the RAF1 gene be sought in patients with phenotypes compatible with Noonan syndrome plus HCM.

Gonadotropin Secretion Profile in Agonadal Boys; from Birth to puberty

R. Grinspon, R. Rey, S. Gottlieb, P. Bedecarrás, M. Ballerini, M. Ropelato

Centro de Investigaciones Endocrinológicas, División de Endocrinología, Hospital de Niños R. Gutiérrez, Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina

A preliminary study in 9 agonadal boys demonstrated that gonadotropins have similar changes with age and pubertal stage as in normal boys, but with higher levels. Gonadotropin ultrasensitive assays detected agonadism even in prepubertal boys. The limit of the study was the small sample.

The aim of this study was to describe the changes in gonadotropin serum levels in a larger sample of anorchid boys from birth to puberty.

We retrospectively analyzed serum concentration of basal FSH and LH (IFMA) in 29 anorchid boys confirmed by no detectable anti-Müllerian hormone (21 with longitudinal follow-up).

Between 0 and 6 months (n = 3) LH (median, range) was 73.3 IU/L (39.6−91.6) and FSH 137 IU/L (98.6−137.1). Between 6 months and 4 years (n = 9) LH was 7,2 IU/L (0,5−11,6) and FSH 60,8 IU/L (6,3−130). Up to 4 years gonadotropins were elevated for age in all cases. Between 4 and 10 years (n = 16) LH was 0,30 IU/L (0,05−8,2) and FSH 11,5 IU/L (1−59,7). In this group, 10 patients had at least one normal LH value and 4 patients had at least one normal FSH value. In patients older than 10 years (n = 13), LH was 25 IU/L (8,1−58,1) and FSH 73,9 IU/L (35,5−125). Only one patient had normal LH.

In conclusion, most of the patients with anorchia have elevated gonadotropins between birth and puberty. However, between 4 and 10 years, a nadir is observed, where gonadotropins can even fall within the normal range in some patients. In this period of life normal gonadotropins do not rule out anorchia.
Abstracts

Evaluation of Insulin Sensitivity and IGFs System in Girls with Precocious Pubarche with and without Biochemical Adrenarche

M. Gryngarten, M. Ballerini, M. Ropelato, H. Jasper, M. Escobar
División de Endocrinologia, CEDE-CONICET, Hospital de Niños Richardo Gutiérrez Buenos Aires, Argentina

Premature pubarche (PP) is due to an early maturation of the adrenal. IGF1 has been proposed as a trigger of normal adrenarche. Alterations in insulin sensitivity (IS) and in the IGFs system have been postulated as being involved in the pathogenesis of premature adrenarche.

Aim: To study girls with PP with and without biochemical adrenarche (BA) and assess whether they present alterations in the IGFs system or in IS.

Thirty one girls with PP were studied and divided into two groups according to DHEAS level, without BA (DHEAS < 400ng/ml, PP1: 14 girls, age 6.3 ± 0.2 y. (x ± SEM) and with BA (DHEAS≥ 400ng/ml, PP2, 17 girls, 7.8 ± 0.2 y.). Both groups were compared to 34 normal prepubertal girls. C1: n = 27, 7.0 ± 0.2 y. without AB and C2: n = 7, 9.4 ± 0.6 y. with AB). The following variables were measured: serum glucose, insulin (ICMA), IGF1 (RIA), IGFBP1 and IGFBP3 (IRMA). Insulin sensitivity was assessed using fasting G/I ratio and HOMA. Two way ANCOVA was used and the covariables were the CA, SDS BMI and height SDS.

The BMI (SDS) was greater in PP1 (1.46 ± 0.35) and PP2 (1.01 ± 0.42) than in C1 (0.17 ± 0.13) and C2 (-0.21 ± 0.31) (p < 0.05). No significant differences were seen in insulin, IGF1, IGFBP1, IGFBP3, fasting G/I or HOMA between PP1 and PP2 vs C1 and C2.

Conclusion: In concordance with previous reports girls with PP with and without biochemical adrenarche have a larger BMI than normal. However, in contrast to what has been reported, when the results were corrected by the above mentioned variables, no alteration in insulin sensitivity or in the IGFs system were detected.

Association of Pseudohypoparathyroidism Ia (PHP Ia) with Pseudo-Obstructive Intestinal Pathology

A. Saredo1, M. Davila2, S. Vidal3, M. Giacomo1, L. Korman1, J. Casais, R. Parias-Nucci1, V. Ratto1
1Sanatorio de La Trinidad Mitre, 2Departamento de Anatomía Patológica del Hospital de Pediatría Prof. Dr Juan P. Garrahan, 3Facultad de Ciencias de La República Oriental del Uruguay, Uruguay

Introduction: PHP Ia associates resistance to the PTH and other hormones to Albright osteodystrophy (AHO). An unusual clinical presentation is described comprising anatomopathologic findings which have not been described previously.

Methods: retrospective analysis of the clinic history.

Results: One month old baby who alternates explosive diarrheas with sub-occlusive intestinal episodes which determines an exploratory laparotomy procedure, including intestinal biopsies. Hystology shows multiple small ganglionar cells in mienteric plexus, positive with neurospecific enolase and compatible with type A neuronal dysplasia. The patient’s intestinal symptoms disappear after 6 months, and there is an important weight gain (13.2kg, BMI 25).

PHP Ia was diagnosed on the basis of physical signs suggesting AHO in the patient and in the mother. The clinical analysis shows, TSH:36.18 uUI/ml (1.0−5), T4: 5.20 ug/dl (6−12); T3:1.48 ng/dl (0.8−2.2), Ca T: 6.7 mg%/ (8.5−10.5); Ca iónico: 4.1mg%/ (4.25−5.25), P: 9.9 mg% (4.6−5.2); PTH: 660 pg/ml (20−75).

Conclusions: PHP Ia and type A neuronal dysplasia are two low incidence pathologies and an association between them has not yet been characterized.

The intestinal pseudo-obstructive pathology has been described in patients with pathologies with elements similar to PHP Ia such as hypothyroidism and hypoparathyroidism. This together with the recent publication of a patient with PHP Ia accompanied by neonatal diarrhea, suggests future histological studies will establish if there is connection between findings described for our patient.

Daily Energy Balance (EB) in Overweight Teenagers

R. Argote, P. Muñoz, L. Lera, E. Díaz
INTA, Universidad de Chile, Santiago, Chile

Aims: To evaluate daily caloric intake and expenditure and the factors associated with the energy imbalance of overweight adolescents.

Materials and Method: In 158 adolescents (84 males) with BMI ≥ 85 th percentile (14.2 to 15.6 years), we evaluated the socioeconomic level (SEL) by Graffar and the magnitude of the overweight by BMI z (CDC / NCHS). The % of fat-free mass (FFM) and body fat (BF) by isotope dilution (Deuterium), daily caloric intake (CI) and physical activity (PA) by record of 24 hrs, the adequacy of CI (ACI) and the Index PA (IPA) by FAO / WHO, the basal metabolic rate (BMR) by indirect calorimetry, the total caloric expenditure (TCE = BMR*IPA) and daily caloric retention (CR = CI-TCE) were estimated. We used to chi2 by associations, and ANOVA and Bonferroni to compare averages and Pearson and Spearman for correlations.

Results: The zBMI was lower (p < 0.05) and FFM % was higher (p < 0.01) in the high SEL, with no differences in %BF. The ACI was < 78% of FAO/WHO sedentary population recommendations, the IPA has fluctuated between 1.26 and 1.34 and the CR between 364 and 395 Kcal, without differences by SEL. The 78.7% of the CR could be explained by zBMI, FFM% and ACI.

Conclusion: In overweight adolescents, the daily EB shows no differences by SEL. The CI and the IPA are under the sedentary populations recommendation and there is an important CR that is directly associated with body weight and inversely with the CI and FFM%.
68

Differential Diagnosis of Sexual Precocious Development in Girls: Basal LH vs GnRH Test with Ultrasensitive Assays

C. Insua, M. Viale, M. Valerini, M. Ropelato, G. Stedile, V. Figueroa, O. Brunetto
Hospital de Niños Pedro de Elizalde, División de Endocrinología, Hospital de Niños R. Gutiérrez, Buenos Aires, Argentina

Introduction: One of the main tools in diagnosing Central Precocious Puberty (CPP) is the (LH/FSH)max ratio post GnRH administration, considering it puberal being > 0.30 (DELFIA assay).

Objective: to compare a chemoluminescence assay (ICMA) with DELFIA and to evaluate diagnosis efficiency of basal LH by ICMA.

Methods: Functional sensitivity (FS) for LH and FSH by ICMA (Immulite, DPC) was evaluated. LH and FSH values post GnRH by ICMA and DELFIA were compared in 15 girls with isolated tachlach (IT) and 21 girls with CPP (diagnosis based on clinical data and LH max post GnRH > 5 UI/L by ICMA). Correlation and concordance coefficients for LH and FSH between both methods were determined in 100 tests’samples. ROC curve analysis was used to determine sensitivity (S) and specificity (E) of basal LH by ICMA vs (LH/FSH)max ratio by DELFIA to predict CPP.

Results: FS for LH and FSH by ICMA was 0.43 y 0.27 IU/L respectively. Correlation and concordance coefficients for LH between both methods were 0.983 and 0.969. Correlation coefficient for (LH/FSH)max ratio between both methods was 0.95. A basal LH value by ICMA > 0.43 UI/L identified CPP patients with a S = 77% and E = 93% (area under the curve 0.87).

Conclusion: LH and FSH determinations by ICMA are comparable with IFMA for values above ICMA’s FS. Basal LH by ICMA may contribute in the diagnosis of CPP with a S: 77% and E: 93% when the GnRH test is not available.

69

Risk Factors for the Development of Early Obesity

R. Burrows, S. Ceballos, M. Burgueño, S. Muzzo
INTA, Universidad De Chile, Santiago, Chile

In Mexico, the prevalence of overweight and obesity in pre-school children have increased of 5.3% in 1999 to the 9.4% in the 2006. Considering the mechanisms that limit the fat gain in this stage, these data are impressive. Factors related to the intrauterine and postnatal environment like the maternal obesity and hyperglucœmia, high and low birth weight, the early weaning, breast-feeding, the sugar-sweetened beverages ingestion, among others are considered risk factors for early obesity.

Methods: In order to find the relative contribution of prenatal, postnatal and genetic factors in the development of obesity we studied patients with diagnosis of obesity before the age of five years and compared with children older than 5 years old without overweight.

Risks by means odds ratios were calculated for each one of the studied factors

Results: We studied 90 children with obesity and 20 children with overweight developed before the 5 years of age and 90 children older than 5 years without overweight. We find significant differences for the familiar antecedent of obesity (p = 0−00), macrosomia and gestational diabetes in their mothers (p = .02), as well as the early whole milk introduction (p = 0−04). The familiar antecedent of obesity increases 4.14 times the risk for developing early obesity, whereas the antecedent of gestational diabetes increases 1.16 times.

Conclusions: The identification of risk factors during the intrauterine life and in the first months of extrauterine life will allow to establish opportune preventive strategies.

70

Expression and Activity of 11β-OH-Steroid Dehydrogenase (11β-HSDs) Type 1 and 2 Enzymes in Human Term Placenta from Small (SGA), Appropriate (AGA) and Large (LGA) for Gestational Age New Borns

G. Itiñiguez, P. Medina, C. Johnson, E. Kakariéka, L. Marquez, F. Cassorla, V. Mericq
IDIMI, Facultad de Medicina, Universidad de Chile, Santiago, Chile

Introduction: In some species foetuses with growth restriction have higher glucocorticoid systemic concentrations. The bioavailability of cortisol at the placental level is regulated by the 11β-HSDs which converts cortisone to cortisol (11β-HSD1), and cortisol to cortisone (11β-HSD2).

Objective: To study the expression of 11β-HSDs in full term placentas from SGA, AGA and LGA newborns and the cortisol cord blood concentration.

Methods: We selected 15 AGA, 15 SGA and 17 LGA. 11β-HSDs placential expression and activity, were determined in the maternal

<table>
<thead>
<tr>
<th>Placental side</th>
<th>SGA</th>
<th>AGA</th>
<th>LGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>11β-HSD1/18S rRNA</td>
<td>Maternal</td>
<td>0.32±0.06</td>
<td>0.29±0.06</td>
</tr>
<tr>
<td>Fetal</td>
<td>0.21±0.04*</td>
<td>0.25±0.05</td>
<td>0.26±0.04</td>
</tr>
<tr>
<td>11β-HSD2/18S rRNA</td>
<td>Maternal</td>
<td>0.37±0.04</td>
<td>0.43±0.06</td>
</tr>
<tr>
<td>Fetal</td>
<td>0.35±0.06</td>
<td>0.43±0.08</td>
<td>0.38±0.05</td>
</tr>
<tr>
<td>11β-HSD1 activity (pg/min/mg protein)</td>
<td>Maternal</td>
<td>0.97±0.08</td>
<td>1.26±0.15</td>
</tr>
<tr>
<td>Fetal</td>
<td>0.93±0.06**</td>
<td>1.41±0.14</td>
<td>1.25±0.13</td>
</tr>
<tr>
<td>11β-HSD2 activity (pg/min/mg protein)</td>
<td>Maternal</td>
<td>8.7±1.0</td>
<td>8.6±0.8</td>
</tr>
<tr>
<td>Fetal</td>
<td>9.0±1.2</td>
<td>7.9±1.0</td>
<td>9.0±0.8</td>
</tr>
<tr>
<td>Cortisol (μg/4L)</td>
<td>16.0±1.9***</td>
<td>11.0±0.7</td>
<td>10.3±1.0</td>
</tr>
</tbody>
</table>

*p < 0.05 M vs. F; **p < 0.05 SGA vs AGA; ***p < 0.05 SGA vs. AGA and LGA.
(M) and fetal (F) side of the placentas, by RT-PCR and by HPTLC respectively. Cortisol was determined by RIA.

Results: Are shown in the table as mean ± SEM.

Conclusion: The lower expression and activity of 11β-HSD1 observed in the fetal side of the SGA placentas suggests a possible compensatory mechanism to diminish the higher cortisol fetal concentrations observed in foetuses with intrauterine growth restriction.

FONDECYT 106-1082.

71

Effect of Growth Hormone (GH) Treatment to Idiopathic Short Stature (ISS) Patients on Peripheral Thyroid Hormone (TH) Mechanism of Action

C. Pellizas, S. Susperreguy, M. Montesinos, I. Mascanfroni, A. Masini-Repiso, L. Muñoz, A. Nuñez, D. Ayan, N. Tkalenko, M. Miras

Hospital de Niños de La Santísima Trinidad, Córdoba, Centro Privado de Endocrinología Infanto-Juvenil, Córdoba, CIBICI-CONICET, Fac. Cs. Qcas. UNC Córdoba, Argentina

Introduction: In previous studies we demonstrated that GH administration to experimental animals and to Turner Syndrome Patients reduced TH mechanism of action evaluated through the expression of its nuclear receptors (TRα and β) and serum markers of TH action (SHBG and TSH). The aim of this work is to study the response to GH in ISS patients under GH therapy. In ISS the height of the individual is more than 2.5 SD below the mean height for a given age, sex and population with no identifiable disorder. Several clinical trials demonstrated beneficial effects of GH treatment.

Patients & Métodos: Five ISS patients that exhibited a growth velocity (GV) < 2.5 SD and positive GH generation tests were evaluated and analyzed previous (pre) and after (post) 12 months of GH therapy (1UI/kg/week). Peripheral blood mononuclear cells were obtained and total RNA extraction for the expression of TRβ and α were performed. In turn, SHBG and TSH were measured in serum (electrochemiluminescence) (real-time RT-PCR) performed. In turn, SHBG and TSH were measured in serum (electrochemiluminescence) (real-time RT-PCR) performed. In turn, SHBG and TSH were measured in serum (electrochemiluminescence). GH therapy was always associated with an increase of TSH and a decrease of SHBG. Moreover, the expression of TRα increased whereas the expression of TRβ reduced. The results achieved in post samples (vs. pre samples designed as 1.00) were: TRβ: 0.44 ± 0.19; TRα: 3.12 ± 1.60; SHBG: 0.73 ± 0.06; TSH: 1.87 ± 0.50 (test t, p < 0.05)

Results: The results achieved in post samples (vs. pre samples designed as 1.00) were: TRβ: 0.44 ± 0.19; TRα: 3.12 ± 1.60; SHBG: 0.73 ± 0.06; TSH: 1.87 ± 0.50 (test t, p < 0.05)

Conclusions: These results indicate that GH treatment to ISS patients reduced the expression of TRβ and enhanced that of TRα. In agreement, a reduction of SHBG and an increase of TSH serum levels were recorded. These preliminary results are being analyzed in a larger number of patients. Since the bone is a target tissue for TH action, these findings may have repercussions in the growth response to GH therapy.

72

Autoimmune Polyglandular Syndrome Type 1 (APS1) in an Argentine Patient: Clinical Characterization and a Novel Mutation in the Autoimmune Regulator (AIRE) Gene

L. Bazzara, L. Muñoz, V. Nievas, L. Castro, D. Ayan, A. Paez, J. Khon, M. Miras

Hospital de Niños de La Santísima Trinidad, Córdoba, Argentina

Introduction: APS1 is a rare organ-specific autoimmune auto- somal recessive disease associated with mutations of the AIRE gene.

Subjects and Methodology: We investigated a 4-year-old boy under treatment for hypoparathyroidism. Each exons of the AIRE gene were individually PCR-amplified, purified, and sequenced by a DNA autoscaler.

Results: The patient presented mucocutaneous candidiasis since the age of 3. He manifested malabsorption symptoms, with negative anti-gliadin, anti-endomyial and anti-smooth muscle antibodies (Abs). Gastro-esophageal endoscopy showed esophagitis by Candida, chronic gastritis and duodenitis. In addition, he developed Sjögren Syndrome and vitiligo in face, trunk and limbs. The patient displayed persistence of hypertransaminasemia with positive anti-liver-kidney microsomal Abs. A hepatic biopsy showed mild active chronic hepatitis. He presented positive adrenal cortex Abs with normal serum cortisol and ACTH. Because of the presence of two diagnostic criteria of APS1, the molecular study of the AIRE gene was performed. A novel heterozygous 2-bp deletion in exon 8 (c901−902delGT) was detected. This mutation presumably results in a frameshift at C302 and premature truncation of a 311-amino acid protein with 9 C-terminal amino acids unrelated to the normal AIRE protein. Moreover, a previously described mutation in the stop codon of AIRE, TGA the other allele.

Conclusions: A novel AIRE gene mutation was identified. This is the first molecular study reported in a patient with APS1 from Argentina.

73

Serum Homocysteine Levels in Children Born Small for Gestational Age

L. Muñoz, G. Soberro, C. Grosso, L. Silvano, M. Ochetti, M. Dipoi, S. Martín, M. Miras

Servicio de Endocrinología Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina

SGA children have increased risk of developing obesity, insulin resistance and cardiovascular disease (CVD) in later life. Leptin and homocysteine (Hcy) are potential biomarkers for predicting the risk of CVD. In hyperinsulinemic obese children and adults elevated total Hcy levels has been found. Few studies have examined Hcy levels in SGA children. We aimed to study total Hcy levels in SGA children with and without catch up growth and assess to their possible association with leptin and insulin sensitivity parameters. We analyzed 21
SGA children with catch-up growth (SGA-cg), CA 7.0 yr SDS height –0.88 and 23 SGA children without catch-up growth (SGA –cg) CA 6.1 yr SDS height –2.27 and 39 healthy children born appropriate for gestational age (AGA), CA 7.2 yr SDS height –0.16. Hey, proinsulin, leptin, IGFBP-1, insulin levels, HOMA-IR and HOMA β cell were measured. ANOVA and Spearman correlation were used.

Results: nonsignificant differences were found in Hcy mean values between SGA and AGA childrens (9.1, 7.7 y 7.8 μmol/l en SGA cg, SGA-cg and AGA respectively) No significative correlation between Hcy levels, birth weigh, BMI, leptin and insulin sensitivity parameters analyzed, were found.

Conclusions: Our study shown that prepubertal SGA children with normal weight, Hcy levels do not resulted a biomarker for differentiated between the analized groups. Longitudinal further studies of metabolic parameters in this cohorte with different ponderal recuperation should be evaluated for assess to possible effects in the develompent of metabolic diseases.

An International Comparison of the Prevalence of Metabolic Syndrome Risk Factors Among Obese Hispanic Adolescents with Polycystic Ovarian Syndrome

N. Garibay, P Medina, G. Lopez-Mitnik, A. Carrillo, Y. Pastrana, S. Messiah

Departamento de Endocrinología Pediátrica, Hospital Infantil de México Federico Gomez, México; División de Investigación Clínica en Pediatría, University of Miami Leonard M Miller School of Medicine, Miami, FL, USA; Departamento de Endocrinología Pediátrica, University of Miami Leonard M Miller School of Medicine, Miami, FL, USA

Background: Adult women with polycystic ovary syndrome (PCOS) have an increased prevalence of the metabolic syndrome (MS) yet few studies have evaluated the prevalence of metabolic syndrome risk factors (MSRF) in adolescents with PCOS, and by ethnicity in particular.

Methods: The aim of the current analysis was to estimate/compare the prevalence of MSRFs among Hispanics (ages 12–18) with PCOS residing in Mexico City (n = 38) and Miami, Florida (n = 57). Analysis of anthropometric (body mass index [BMI], waist circumference [WC]), and laboratory data (fasting insulin, glucose, total cholesterol, triglyceride) using medical charts among girls attending an obesity clinic at Children’s Hospital in Mexico City, and Hispanic girls at the University of Miami, was conducted. PCOS diagnosis was established if 2 of the following: (1) clinical/biochemical hyperandrogenism, (2) PCO by ultrasound, or (3) oligo-anovulation.

Results: Mexican girls with PCOS had significantly lower fasting glucose (83.15 vs. 92.35 mg/dL, p < 0.01) and higher waist circumference (95.98 vs. 87.01 cm, p < 0.05) than their non-PCOS counterparts. Miami girls had significantly higher BMI (38.19 vs. 31.20, p < 0.0001) and WC (113.48 vs. 97.29 cm, p < 0.0001) than their non-PCOS counterparts.

Conclusions: Abdominal adiposity is predominant in both groups of PCOS patients suggesting that hyperandrogenism may exert direct effects on body fat distribution and genetic attributes. Hypertriglyceridemia associated with lower insulin response in Mexican girls may predict a stronger cardiometabolic risk outcome.

Influence of Polycystic Ovarian Syndrome on the Prevalence of Metabolic Syndrome Risk Factors Among Obese Hispanic Adolescents

N. Garibay, P Medina, G. Lopez-Mitnik, A. Carrillo, Y. Pastrana, S. Messiah

Departamento de Endocrinología Pediátrica, Hospital Infantil de México Federico Gomez, México; División de Investigación Clínica en Pediatría, University of Miami Leonard M Miller School of Medicine, Miami, FL, USA; Departamento de Endocrinología Pediátrica, University of Miami Leonard M Miller School of Medicine, Miami, FL, USA

Background: Polycystic ovarian syndrome (PCOS) is leading cause of cardiometabolic disease in adolescent girls, particularly among those who are obese. Previous studies suggest that adolescent girls with PCOS have a higher prevalence of the metabolic syndrome (MS) compared to the general adolescent population but little comparison has been done with their obese non-PCOS counterparts.

Methods: The aim of the current analysis was to estimate/compare the prevalence of MS risk factors among 4 obese Hispanic (ages 12–18) groups: those with (n = 38) or without (n = 31) PCOS residing in Mexico City, and in Miami, Florida (n = 57 and 89, respectively). Analysis of body mass index (BMI) waist circumference (WC), and fasting insulin, glucose, total cholesterol and triglycerides using medical charts among girls attending an obesity clinic at Children’s Hospital in Mexico City, and Hispanic girls at the University of Miami, was conducted. PCOS diagnosis was established if 2 of the following: (1) clinical/biochemical hyperandrogenism, (2) PCO by ultrasound, or (3) oligo-anovulation.

Results: Mexican girls with PCOS had significantly lower fasting glucose (83.15 vs. 92.35 mg/dL, p < 0.01) and higher waist circumference (95.98 vs. 87.01 cm, p < 0.05) compared to their non-PCOS counterparts. Miami girls had significantly higher BMI (38.19 vs. 31.20, p < 0.0001) and WC (113.48 vs. 97.29 cm, p < 0.0001) than their non-PCOS counterparts.

Conclusions: Abdominal adiposity is predominant in both groups of PCOS patients suggesting that hyperandrogenism may exert direct effects on body fat distribution.
76

Waist to Height Ratio and Cardiometabolic Risk in Adolescents with Obesity and Overweight

H. Marcano, Y. Briceño, N. Maulino, M. Perez, M. Garcia, G. Bracho, L. Gaffaro

Hospital de Niños “JM de Los Rios”, Caracas, Venezuela

Introduction: The estimate of cardiovascular risk in children and adolescents with overweight has taken great significance for increasing prevalence of obesity worldwide. In Japanese adults and children in Europe and Asia have conducted studies documenting the Waist to Height Ratio as better predictor of cardiovascular risk factors than the body mass index and abdominal perimeter.

Methods: We evaluated 103 adolescents of both sexes, with an average age of 14.04 ± 1.52 years, 68 obese and overweight 45. We performed waist and height measuring and correlated with HOMA, QUICKI, Triglycerides / HDL indexes, lipid profile and Fibrinogen.

Results: Waist to height Ratio correlates significantly with triglycerides, HDL levels and HOMA, QUICKI and Triglycerides / HDL indexes.

Conclusion: Waist to height Ratio is a practical, simple and useful in predicting cardiovascular risk factors in adolescents with obesity and overweight.

77

Androgen Receptor Gene Expression in Genital Tissues and Peripheral Blood Lymphocytes

T. Sousa e Silva, C. Longui, M. Melo, D. Cunha, A. Amarante, A. Silveira

Santa Casa SP, Faculty of Medical Sciences, Pediatric Endocrinology Unit and Molecular Medicine Laboratory, Sao Paulo, Brasil

Hypospadias can be determined by failure on androgen production or action upon its receptor (AR). The aims of this study were to develop a quantitative method for AR gene expression by employing real time PCR, allowing the measurement of AR expression in prepubertal genital tissues (preputial skin and urethral mucosa) and peripheral blood lymphocytes. The samples were obtained from boys with phimosis (n = 28) and boys with idiopathic hipospádia (n = 8). qRT-PCR was performed in Applied Biosystems 7500 thermo-cycler, employing FAM-labeled TaqMan probes. Standard curves were constructed with RNA obtained from normal prostate gland of cadaver donor. In order to normalize for the amount of RNA, absolute AR quantitation was corrected for the expression of the constitutive gene BCR, AR/BCR quantitative ratio (see Table). The results are presented as median (interquartile).

<table>
<thead>
<tr>
<th></th>
<th>Phimosis</th>
<th>Hypospadias</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR/BCR blood</td>
<td>0.3(0.2–1.5)*</td>
<td>0.6(0.10–1.5)*</td>
</tr>
<tr>
<td>AR/BCR urethra</td>
<td>40.3(17.4–62.3)</td>
<td>32.8(22.8–37.0)</td>
</tr>
<tr>
<td>AR/BCR prepuce</td>
<td>25.5(6.1–42.2)</td>
<td>14.9(9.9–22.0)</td>
</tr>
</tbody>
</table>

The expression of the androgen receptor gene was reduced in peripheral blood lymphocytes when compared with the other genital tissues (*p < 0.05, Mann Whitney). The qRT-PCR proved to be very efficient in the measurement of the AR gene expression. Additional patients should be studied, in order to rule out the quantitative failure of gene expression as a putative mechanism of idiopathic hypospadias.
Author Index for Abstracts

Numbers refer to abstract numbers

Accorint, J.	5
Acha, O.	26
Adan, L.	46
Adler, L.	19
Altamirano, K.	56
Amarante, A.	77
Anaya, B.	28
Andreone, L.	22
Antonini, S.	13, 15, 16, 23
Arata-Bellabarba, G.	48
Arcari, A.	20
Argandolfo, F.	43
Argote, R.	67
Arnhold, I.	2, 9, 16, 30, 35
Arriaza, M.	4
Arriazu, M.	19, 63
Avila, A.	29, 38, 51
Ávila, A.	34
Ayán, D.	71, 72
Ayúb, E.	49
Azziz, R.	58
Bachega, T.	35
Bailez, M.	24
Baillargeon, J.	58
Baldwin, A.	62
Balestracci, A.	50
Ballerini, M.	20, 21, 27, 55, 64, 65, 68
Baptista, M.	62
Baquedano, M.	5, 6
Barbieri, M.	13
Barbier, M.	15
Barontini, M.	11, 14, 26
Barra, C.	61
Barontini, M.	11, 14, 26
Barbieri, M.	13
Barroso, Y.	76
Brito, P.	44
Brunetto, O.	53, 68
Bueno, A.	13, 15
Burgueño, M.	42, 69
Burrows, R.	42, 69
Cabello, E.	56
Cabral, D.	9
Caletti, M.	50
Camacho, N.	48
Câmara, M.	25
Campo, S.	22
Carrillo, A.	74, 75
Carvalho, F.	31
Carvalho, L.	30
Casais, J.	66
Cassorla, F.	3, 8, 29, 34, 36, 38, 43, 58, 70
Castillo, J.	32
Castro, A.	38
Castro, J.	31
Castro, J.	72
Castro-Nallar, E.	38
Ceballos, S.	42, 69
Cestino, L.	49
Chaler, E.	7, 10, 54
Chertkoff,	54
Chiesa, A.	12, 17, 37, 41, 55
Chung, W.	1
Ciaccio, M.	24
Coco, R.	53
Corder, E.	1, 4, 34, 36
Coll, S.	49
Colombi, L.	49
Cortez, J.	56
Costa, E.	52
Costaglina, S.	18
Costalonga, E.	16, 30
Costanzo, M.	6, 24, 50
Coutinho, D.	2
Couto-Silva, A.	46
Coyote, N.	59
Criscuolo, M.	47
Cunha, D.	77
Cunha, S.	31
Damiani, D.	9, 40, 61
da Silva, N.	25
Davila, M.	66
de Bellis, R.	53
de Castro, C.	25
de Castro, M.	13, 23
Della Manna, T.	61
del Rey, G.	53
de Menezes Filho, H.	40
Deng, L.	1
Der Parsehian, S.	57
de Souza, R.	13
Díaz, E.	67
Dichtchekhenian, V.	40
Diez, R.	47
Dipoi, M.	73
Domanico, R.	6
Doméné, H.	21, 27
Domenice, S.	52
Dorantes, L.	32
Dratler, G.	10, 57
D’Souza-Li, L.	33, 62
Ellard, S.	4
Escobar, M.	20, 65
Espiñeira, A.	13, 15
Eyzaguirre, F.	34, 36
Fabbri, T.	62
Feleder, E.	47
Fernández-Rosa, F.	13, 15, 23
Fernández, I.	53
Figueroa, V.	53, 68
Fonseca, B.	31
Foss, M.	15
Franca, M.	30
Freire, A.	17
Gaete, X.	4, 36
Gaffaro, L.	76
Galeano, J.	24
García, H.	4
García, L.	28
García, M.	76
Garibay, N.	32, 59, 74, 75
Gelle, D.	58
Giacco, M.	66
Gil, S.	50
Godoy, C.	1, 39
Gomes, C.	52
Gomes, L.	35
Gómez, R.	48
Gonzalez, E.	47
Gonzalez, I.	56
Gonzalez, M.	7
Gonzalez Sanguinetti, A.	19
Goran, M.	58
Gottlieb, S.	21, 22, 64
Goulart, E.	31
Gripp, K.	63
Grosso, C.	73
Gruñero-Papendieck, L.	12, 20, 37, 55
Grygarten, M.	20, 65
Guerra-Juniour, G.	16, 44
Guerra-Juniour, G.	33, 62
Gunn, D.	29
Gunttsche, E.	49
Gunttsche, Z.	49
Gutierrez, M.	53
Halabe, K.	47
Heinrich, J.	27
Hernández, M.	18, 38, 51, 58
Hernández, M.	3
Herzovich, V.	10, 54, 57
Itiguiz, G.	29, 34, 38, 43, 70
Itiguiz, H.	3
Itiguiz, T.	51
Insua, C.	68
Ioancsksy, S.	26, 57
Jasper, H.	27, 65
Javier, F.	47
Johnson, C.	43, 70
Jorge, A.	2, 9, 16, 30
Juarez, M.	28
Kakarika, E.	43, 70
Karabatas, L.	27
Kaupert, L.	52
Keselman, A.	17, 20, 21, 27, 41
Khon, I.	72
Kirwin, S.	63
Ko, I.	55
Kormant, L.	66
Kuperman, H.	40
Laerj, K.	7
Ladeia, A.	46
Lamamoglia, J.	8
Lamounier, J.	31
Lavarello, C.	8
Lazzati, J.	10, 57
Leal, A.	9
Lemos-Marini, S.	62
Lera, L.	67
Levin, G.	11, 14, 26
Llado, D.	63
Llano Garcia, M.	45
Llano, J. 45
Longui, C. 77
López, E. 60
Lopez-Mitnik, G. 74, 75
Lopez, P. 36
López, P. 34
Loreti, N. 22
Maciel-Guerra, A. 62
Madureira, G. 35
Maglio, S. 26
Magnavita, M. 46
Maniero, S. 49
Manna, T. Della 40
Mantovani, R. 31
Marcano, H. 76
Marino, R. 24, 50
Marlene, I. 35
Marquez, L. 43, 70
Martinelli, C. 23
Martinez, A. 27, 37, 51
Martinez, A. 21
Martinez-Aguayo, A. 1
Martinez, J. 8
Martin, S. 73
Mascanfroni, I. 71
Masini-Repiso, A. 71
Matias, M. 33
Maulino, N. 76
Meazzo, C. 7
Medesco, G. 45
Medina, P. 70, 74, 75
de Mello, M. 44
Melo, M. 77
Mendonca, B. 2, 16, 35, 52
Mendonça, B. 9, 30
Menezes-Filho, H. 61
Mericq, V. 1, 3, 4, 18, 51, 70
Messiah, S. 74, 75
Miras, M. 60, 71, 72, 73
Molina, Z. 48
Montenegro, L. 2, 9
Montesinos, M. 71
Moran, V. 32
Moreira, A. 15, 23
Moura, L. 31
Muñoz, L. 59, 60, 71, 72, 73
Muñoz, P. 67
Murano, M. 6
Muñoz, S. 42, 69
Najera, N. 32
Nájera, N. 59
Natta, D. 19
Nievas, V. 72
Nishi, M. 30, 52
Nuñez, A. 71
Oberfield, S. 58
Ochetti, M. 73
Olive, C. 37
Olivares, J. 32
Oliveira, J. 31
Paez, A. 72
Pagan, S. 7
Paoli, M. 48
Papendieck, P. 12, 37, 55
Parias-Nucci, R. 66
Pastrana, Y. 32, 59, 74, 75
Pedraza, M. 39
Pellizas, C. 71
Peña, A. 51
Pepe, C. 5
Pérez, A. 60
Pérez-Bravo, F. 34
Perez, M. 76
Pérez, O. 28
Petrilli, A. 25
Piñera, C. 39
Pipman, V. 27
Pires, L. 25
Ponzio, R. 5
Pretz, D. 19
Queipo, G. 32, 59
Ratto, V. 66
Reis-Neto, J. 46
Rey, R. 21, 22, 64
Rhumie, K. 36
Ribas, A. 10
Rios, D. 44
Rivarola, M. 5, 6, 7, 10, 24, 50, 54
Rivera, J. 43
Rivolta, C. 37
Rocha, A. 1
Rodriguez, G. 55
Roman, R. 8, 29
Román, R. 3
Ropelato, G. 17
Ropelato, M. 20, 21, 22, 27, 41, 55, 64, 65, 68
Roubicek, M. 63
Rozalem, A. 25
Ruiz, B. 57
Salazar, T. 8, 51
Salom, F. 55
Sansó, G. 11, 14, 26
Santos, M. 52
Saraco, N. 5, 6, 50
Sarari, F. 49
Saredo, A. 66
Savoldelli, R. 61
Scaglia, P. 27
Schneider-Rezek, G. 33
Setian, N. 40
Silvano, L. 60, 73
Silva, R. 4
Silveira, A. 77
Silviero-Miachon, A. 25, 62
Sobrero, G. 60, 73
Sotomayor, K. 18
Sousa e Silva, T. 77
Sousa, S. 44
Spinola-Castro, A. 25, 62
Stedile, G. 68
Susperreguy, S. 71
Targovnik, H. 37
Ten, S. 58
Tkalenko, N. 71
Tolosa, N. 60
Toralles, M. 44
Torrado, M. 54
Torres, H. 56
Tovo, A. 57
Trovano, M. 41
Ugarte, F. 4
Unanue, N. 36
Uzcátegui, L. 48
Vaiani, E. 54
Valente Lemos-Marín, S. 33
Vale, R. 46
Veduguez, E. 35
Vega, C. 39
Venara, M. 12
Viale, M. 68
Viana, M. 31
Vidal, S. 66
Vieites, A. 11, 14, 26
Villarreal, V. 48
Villarroel, C. 34
Villena, R. 39
Vivanco, M. 36
Wärman, M. 24
Younton, R. 3
Yunge, M. 39
Zerpa, Y. 48