Dear Sir,

Ipriflavone, an isoflavone derivative synthesized by Chinoin (Hungary), is commercially available in the clinical treatment of osteoporosis in Japan. The mechanism of action of the drug involves inhibition of bone resorption by a direct action and also indirectly by enhancing the effect of estrogen by increasing calcitonin secretion. With our attention focused on the mechanism of action of this substance, in the present study we investigated changes in ALP, calcitonin and osteocalcin in the serum of hemodialysis patients with renal osteodystrophy after oral administration of ipriflavone in doses of 400–600 mg/day. Furthermore, blood concentrations of ipriflavone and its active metabolites were determined before and after hemodialysis in a patient who received 400 mg/day for 6 months. The subjects were 23 patients with decreased bone minerals demonstrated by microdensi-tometry, single photon absorptiometry or dual energy X-ray absorptiometry. The period of observation ranged from 1 to 9 months. The results showed that ALP levels were significantly decreased after administration of ipriflavone; the decrease was significant even in the group of patients with ALP levels above the upper limits of the normal range (normal level of serum ALP is defined as 2.5–10.0 Ka-U at our hospital). Calcitonin was
significantly increased 1 month after administration when compared with levels prior to
treatment (normal level of
Table 1. Variations in serum ALP, calcitonin and osteocalcin

Student’s t test. NS = Nonsignificant.
Effect of Ipriflavone on Hemodialysis Patients with Renal Osteodystrophy

Table 2. Serum concentrations of ipriflavone and its metabolites, and hematocrit (Ht)
calcitonin: less than 100 pg/ml). No significant change was found in osteocalcin (normal level:
2.5–8.5 ng/ml) (table 1). Levels of ipriflavone before and after hemodialysis, as shown in table 2,
were not much greater than those in patients with normal kidney function reported by Sato et al. [1].

Among the various types of animal-derived calcitonin preparations which have been used to treat
renal osteodystrophy, ipriflavone is distinctive in that it can increase physiological calcitonin
within the human body. Calcitonin levels in our patients were considerably higher than
those in patients with the normally functioning kidneys reported by Sato et al. [1], suggesting
that the effect of ipriflavone on calcitonin may be slightly different in dialysis patients than in
persons with normal kidney function.
The data obtained in the present study, together with the fact that there was not even a single
instance of adverse effects, indicate that ipriflavone has the potential to be effectively used in the
treatment of renal osteodystrophy. Further studies will be performed on this subject.
Reference
1 Sato T, Koike T, Hamada A, et al: Pharmacokinetic study of ipriflavone (TC-80) by long-term