Dear Sir,

Rhabdomyolysis has several causes, both traumatic and nontraumatic [for references, see 1]. Up to 33% of patients with rhabdomyolysis develop acute renal failure (ARF). The recovery time may vary from 4 to 8 weeks depending on the degree of ARF. We report now on 3 patients who developed ARF, due to rhabdomyolysis, after the intravenous or intranasal use of a mixture of cocaine and heroine, treated with conventional therapy or with conventional therapy and subpharmacological doses of dopamine plus frusemide.

Patient 1
A 23-year-old male drug abuser was brought to the emergency room comatose and with hypovolemic shock after his last intravenous injection of a mixture of cocaine and heroine. The patient had been found lying on a beach where he had been for about 30 h. Examination revealed a marked edema of the right arm and leg. Initial laboratory values are shown on table 1. Oligoanuria was present. Therapy was started with fluid administration, sodium bicarbonate and loop diuretics as usual. On the 2nd hospital day hemodialysis was started. The oliguric phase persisted for 22 days and serum urea and creatinine peaked at 142.6 mmol/l (400 mg/dl) and 925.9 µmol/l (10.6 mg/dl), respectively. The patient required 18 hemodialytic treatments. On the 46th hospital day the patient was discharged with normal renal function.

Patient 2
A 25-year-old male drug abuser was brought to our department with a 1-day history of anuria. He had been found lying on his right side for about 20 h after he had taken intranasally a mixture of cocaine and heroine. Examination revealed a marked edema of the right arm and leg associated to cutaneous hypoesthesia and paralysis of the right arm. Temperature was 37.5 °C and the patient was totally confused. Blood pressure was 120/80 mm Hg. Initial laboratory values are shown on table 1. Therapy was started with fluid and sodium bicarbonate administration plus a continuous intravenous infusion of subpharmacological doses of dopamine (3 µg/kg/min) and an intravenous bolus of frusemide (60 mg) 3 times a day. On the 2nd hospital day it was necessary to start hemodialysis. Oliguria persisted for 11 days during which urea and serum creatinine peaked at 107.7 mmol/l (302 mg/dl) and 1,065.7 µmol/l (12.2 mg/dl), respectively. The patient required 13 hemodialytic treatments. On the 36th hospital day the patient was discharged with normal renal function.
respectively. 10 hemodialytic treatments were performed and the patient was discharged on
the 21st hospital day with normal renal function.

Patient 3
A 22-year-old male was brought to the emergency room with a 1-day history of left leg pain
and hypoesthesia, abdominal pain

© 1992 S. Karger AG, Basel
0028-2766/92/
0602-0242S2.75/0
and oliguria. He admitted to using cocaine and heroine for 5 years. He was found lying on his
left side in the bathroom unconscious for about 10 h after he had taken intranasally a mixture
of heroine and cocaine. Physical examination disclosed a swollen and tender left leg. Blood
pressure was 125/70 mm Hg. Otherwise physical examination was unremarkable. Admission
laboratory data are shown on table 1. Therapy was started with fluid and sodium bicarbonate
administration plus a continuous intravenous infusion of subpharmacological doses of
dopamine (3 µg/kg/min) and a bolus of frusemide (60 mg) intravenously 3 times a day.
Despite therapy azotemia progressed and it was necessary to start hemodialysis on the 2nd
hospital day. Oliguria persisted for 10 days during which 8 hemodialyses were performed and
the patient was discharged on the 23rd hospital day with normal renal function.

The role of traumas in rhabdomyolysis and consequent myoglobinuria was first recognized
by Beawaters and Beall [2] during World War II. Since then there has been increasing
evidence that not only traumas but also several nontraumatic causes can induce the onset of
rhabdomyolysis. Both traumatic and nontraumatic rhabdomyolysis may develop
complications with the onset of a slow developing ARF. The cases reported are similar both
in cause and in clinical and metabolic features. All patients suffered from rapidly developing
ARF and needed hemodialysis since the 2nd hospital day. The unusual rapid onset and the
degree of renal damage probably depended on both the well-known toxic effect of myoglobin
and the high blood levels of cocaine. We know, in fact, how cocaine may induce renal and
muscular ischemic damage by inhibiting norepinephrine reuptake into nerve terminals, thus
prolonging and potentiating its effects [3]. It is possible that cocaine-induced renal
vasoconstriction might have produced a lowering of renal perfusion as associated with
hypovolemia. In this situation cocaine might well be a predisposing factor for myoglobin-
induced tubular injury. Although similar in onset and degree, ARF evolved differently in the
patients. Patient 1 showed an oliguric period of 22 days and reached normal renal function by
the 46th hospital day. Patients 2 and 3 showed an oliguric phase of 11 and 10 days,
respectively, reaching normal renal function on the 22nd and 23rd hospital day, respectively.
Patient 1 needed 18 hemodialyses while patients 2 and 3 needed 10 and 8 hemodialyses,
respectively. Patient 1 received conven- tional therapy while patients
2 and 3 also received dopamine and frusemide boluses. Dopamine at subpharmacological
doses plus frusemide in ARF therapy was first used by Lindner et al. [4] in 1979. Studies
have shown that subpharmacological doses of dopamine interact with specific dopaminergic
intrarenal receptors to reduce renal vascular resistance and improve cortical perfusion [5]. On
the other hand, frusemide enhances synthesis of intrarenal vasodilating prostaglandins with a
consequent redistribution of blood flow from the medulla to the cortex. As we know how
cocaine-induced vasoconstriction and hypovolemia may be responsible for acute renal
damage, a combination of dopamine in low doses with frusemide seems to be a rational way
to reverse oliguria in cocaine-associated myoglobinuric ARF.

References
Haapanen E, Pellinen TJ, Partanen J: Acute renal failure following nontraumatic
Bywaters EGL, Beall D. Crush injuries with impairment of renal function. Br Med J 1941;
i:427-432.
76-78.
Lindner A, Cutler RE, Goodman WG, Pansing PA, Knester R: Synergism of dopamine plus
Graziani G, Cantaluppi A, Casati S, et al: Dopamine and frusemide in oliguric acute renal