Urinary Endothelin and Sodium Excretion in Essential Hypertension

I.-e. Iku-e Saito
K. Kenji Mizuno
S. Susumu Niimura
S. Soitsu Fukuchi

Third Department of Internal Medicine, Fukushima Medical College, Fukushima, Japan

Dr. Iku-e Saito, MD, Third Department of Internal Medicine, Fukushima Medical College, 1 Hikari-ga-oka, Fukushima 96012 (Japan)

used was 250% with ET-2, 14% with human big ET and less than 0.01% with ET-3. Whereas no significant differences in the plasma irET-1 were observed among the normal-, low- and high-sodium intakes, urinary excretion of irET-1 was 20.1 ± 2.5 (mean ± SE), 11.8 ± 3.8 and 29.6 ± 3.5 ng/g creatinine with the respective sodium diets. A similar change in fractional excretion of irET-1 (FEET) was observed with these different sodium intakes (1.2 ± 0.2, 0.7 ± 0.1 and 7.0 ± 0.6) ± 0.5, 4.0 ± 0.5, 3.0 ± 0.3, 2.0 ± 0.2, 1.0 ± 0.1

Fig. 1. Relationship between FEET and FENa of low-, normal- and high-sodium intakes.

Dear Sir,

Endothelin (ET), a potent vasoconstrictor known today, has been suggested to play multiple roles in cardiovascular diseases. Although ET was first isolated from vascular endothelial cells, recent studies have provided evidence which suggests that ET is widely distributed in renal tissue compatible with important autocrine and paracrine actions in the kidney [1]. Indeed, several reports demonstrated that increased ET production within the kidney may contribute to the intense intrarenal vasoconstriction characteristic of acute renal failure [2], endotoxin shock [3] and cyclosporin nephrotoxicity [4]. However, knowledge concerning the precise role of ET in the kidney tissue is still scanty. We have, therefore, examined the effect of sodium intake on
urinary ET excretion to gain insight into a role of ET in renal handling of sodium in essential hypertensive patients with normal renal function.

After informed consent had been obtained, 12 patients with uncomplicated, untreated essential hypertension were enrolled in this study. These subjects were given a daily diet containing 120 mmol of sodium (normal sodium) for at least 10 days. Then, a diet containing 35 mmol of sodium (low sodium) was given to the subjects for 1 week, after which a diet containing 250 mmol of sodium (high sodium) replaced it and was continued for 1 week. On the final day of each regimen, a 24-hour urine sample was collected at 4°C for determinations of sodium, creatinine, immuno-reactive atrial natriuretic peptide and immuno-reactive ET-1 (irET-1). Blood was withdrawn on the last morning of each regimen for measurement of sodium and irET-1. irET-1 was determined by radioimmunoassay. The cross-reactivity of the anti-ET-1 antibody was 2.5 ± 0.4%, respectively. There was a significant positive correlation between FEet and fractional excretion of sodium (FENa), as a whole group (r = 0.48, p < 0.01; fig. 1). Although the origin of urinary ET-1 is not clear at present, our data raise the possibility that a large part of urinary ET-1 is of renal origin since plasma ET-1 levels remained unchanged with different sodium intakes which, in contrast, affected significantly the mode of urinary excretion of ET-1. In support of this concept, recent studies have shown that radio-labeled ET infused into the rat vein could not be detected in urine [5]. Further, irET was detected in quantities in cultured inner medullary duct cells, indicating synthesis of ET in those particular cells in the kidney [6].

Of interest in the present study is the finding that FEet was correlated positively with FENa. It has been shown that exogenous ET reduces glomerular filtration rate concomitantly with increment in FENa [7]. ET has also been shown to inhibit Na⁺-K⁺-ATPase in inner medullary collecting duct cells [8]. In the light of these findings, together with the present results, it seems likely that renal ET increases sodium excretion by suppressing sodium reabsorption in the duct. If this is the case, our study suggests an important role of ET in the renal handling of sodium in patients with essential hypertension with normal renal function. Apparently, further studies are needed to
elucidate a more precise role of renal ET in sodium homeostasis in diverse physiopathological states.

References

Announcement
Charles E. Culpeper Foundation Scholarships in Medical Science
The Charles E. Culpeper Foundation is currently accepting applications for its 1994 Scholarships in Medical Science Program designed to support the career development of academic physicians. Up to 3 awards of $100,000 per year for 3 years will be made to United States medical schools on behalf of candidates who are US citizens, who have received their MD degree from a US medical school in 1985 or later, and who are judged worthy of support by virtue of the quality of their research proposals. All scientific research relevant to human health is eligible for consideration. No institution may nominate more than 1 candidate.

In selecting awardees, emphasis will be on identifying young physicians with clear potential for making substantial contributions to science as academic physicians. Since January 1988, 18 physicians have been selected as Charles E. Culpeper Foundation Medical Scholars. Deadline for applications is August 16, 1993. Awards will be announced by January 14, 1994, for activation on or about July 1, 1994. For application forms and instructions please contact the foundation at the following address:
Charles E. Culpeper Foundation
Suite 404
Financial Centre
695 East Main Street
Stamford, CT 06901 (USA)