Anaphylactoid Reactions, Angiotensin-Converting Enzyme Inhibitors and Extracorporeal Hemotherapy

A. Schwarzbeck
K.-W. Wittenmeier
U. Hällfritzsch

Dialysezentrum Mannheim-Käfertal, Mannheim, FRG

Dear Sir,

Anaphylactoid reactions have been reported during the last years in patients undergoing hemodialysis [1,2]. The reactions, which occur within 10 min of initiating extracorporeal treatment, were mostly attributed to AN-69 high-flux membranes although other membranes and causes have been accused. The mechanism of origin remains quite unclear so far, membrane characteristics, residual ETO, endotoxin fragments and glyco-saminoglycans were suspected as possible causes. The reactions are neither histamine dependent nor mediated by complement activation. They are presumed to develop from drastic rises in plasma bradykinin [6] which will not be degradated in ACE-inhibited patients. The generation of bradykinin is activated by contact of whole blood or plasma with negatively charged or strongly protein-adsorbing surfaces.

Of 95 regular dialysis treatment patients treated in our unit, 23 were on ACE-inhibitor therapy in 1991. In 55 patients, high-flux membranes were used [cellulose acetate 16, po-lysulfon 18, polymethylmethacrylate (BK-series) 19, polyamide 2], 11 of these patients were on ACE-inhibitors as well. Six of them suffered from anaphylactoid reactions of different extension (bradykardia, hypotension, abdominal cramps) immediately after start of hemodialysis. In all cases, polymethylmethacrylate membranes (gamma-sterilized) were involved. After withdrawal of either dialyser or ACE-inhibitor, the reactions ceased.

Recently we observed similar reactions on 3 consecutive sessions of low-density lipopro-tein apheresis (dextran sulfate adsorption) in a patient receiving ACE-inhibitors (enalapril 10 mg). The reaction started when about 100 ml of plasma returning from the adsorber column reentered the circuit. Slowing of the plasma pump ameliorated the seriousness of the reaction. Antihistaminics, H1-antagonists, steroids, volume repletion and sympato-mimetics were without effect. Premedication with dextran 1 (promit 1.5 g) did not prevent the reaction on different occasion, IGE and C1-esterase inhibitor were normal in quantity and function, ETO antibodies were absent and there was no eosino-philia. After withdrawal of enalapril, no further reactions were seen. Hypertension in this patient was controlled later by captopril medication twice daily which was omitted before apheresis treatment.

Contacting distributor (Kaneka, Bad Homburg FRG) and other centers, we became aware that adverse reactions in ACE-treated patients on extracorporeal hemother-apyes were more common than expected, although the coincidence often remained unnoted. AN-69 high-flux dialysis [1, 2], polymethylmethacrylate high flux dialysis [own observation], membrane plasma separation [Dr.
Wagner, Essen] and reused polysulfone [7] have caused such effects as well as cascade filtration
[Dr. Jontofson, Freiburg; Dr. Tschöpe Villingen-Schwenningen] dextran adsorption [3,4; Dr.
Pföhl, Tubingen; Dr. Bahr, Bielefeld, Dr. Keller, München], he-parin precipitation [Dr. Schuff-
Werner, Göt-tingen] and immunoadsorption [Dr. Pföhl, Tubingen].

These reactions were different in severity but similar in symptomatology which fits with the
individually different expression of the ACE-coding gene [5]. Since it is known that dextran
sulfate and AN-69 are potent activa-

© 1993 S.KargerAG Basel
0028-2766/93/
0653-0499S2.75/0
itors of the contact-activating system [6], one would assume that all the anaphylactoid reactions
which occur in ACE-inhibited patients during extracorporeal treatments have only two things in
common: intake of ACE-inhibitors and contact activation. Because prescription of ACE-
inhibitors is increasing rapidly, their coincidental application in patients undergoing
extracorporeal hemotherapy will occur more frequently in the future. From the lesson taught by
AN-69 dialysis reactions, we strongly recommend greater caution in all extracorporeal
treatments where blood or plasma of ACE-inhibitor-treated patients contacts activating surfaces
which may generate bradykinin.

References
Verresen L, Waer M, Vanreterghe J, Michiel-sen P: Angiotensin-converting-enzyme
inhibitors and anaphylactoid reactions to high-flux membrane dialysis. Lancet 1990;336:1360-
1362. Dinarello CA: ACE inhibitors and anaphylactoid reactions to high-flux membrane dialysis
Schwarzbeck A: Anaphylactoid Reactions during Lipidapheresis in a Patient on ACE-Inhibi-
tor therapy. 4th Int Symp Treat Severe Dyslipoprot Prev CHD, Munich, October 1992. Cambien F,
Kojima S, et al: Effect of mafamostat on bradykinin generation during low density lipoprotein
apheresis using a dextran sulfate cellulose column. Trans Am Soc Artif Int Org 1991 ;37:614-
618.
Biological responses at non-physiological interfaces and molecular design of bio-compatible

Schwarzbeck/Wittenmeier/Hälflritzsch
Anaphylactoid Reactions, ACE-inhibitors, Extracorporeal Hemotherapy

500
Book Review
Allen R. Nissenson Richard N. Fine
Dialysis Therapy
US$ 42.00. ISBN 1-56053-058-8
This is a useful multiauthor soft book dealing with all the theoretical and practical aspects of dialysis therapy. It is up to date, concise, and each section has a few choice references for further reading. It is a must for fellows in Nephrology who need to know the theoretical aspects as well as the practical details of hemodialysis and peritoneal dialysis. The book covers dialysis in both adults and children and should be purchased by all nephrologists in training, as well as by those in charge of training programs.