Dear Sir,

The clinical problem of hemodialysis-associated hypotension has partially been resolved by lowering ultrafiltration rates in hypotension-prone patients. However, the mechanisms leading to hypotensive circulatory states during hemodialysis or in the inter-dialytic phase in a subgroup of chronic hemodialyzed patients remain unclear. Caretta et al. [1] found in 10 hypotensive patients an extraordinarily increased number of thrombocyte \(\alpha_2 \)-adrenoceptors, a moderate elevation of plasma noradrenaline levels as well as a diminished lymphocyte cAMP production in response to isoproterenol. The authors suggested an adrenoceptor adenylate cyclase uncoupling as a mechanism of low blood pressure in these patients.

The results of Caretta’s [1] \(\alpha_2 \)-adrenoceptor determination are completely at variance to those observed by Daul et al. [2]. Moreover, in a very limited number of patients (\(n = 10 \)) with hemodialysis-induced hypotension with a mean arterial blood pressure of \(102 \pm 18 \) mm Hg prior to and \(66 \pm 13 \) mm Hg (mean \(\pm \) SD) after hemodialysis, we determined an \(\alpha_2 \)-adrenoceptor density of \(192 \pm 75 \) versus \(246 \pm 110 \) fmol/mg protein in hemodynamically stable patients (\(n = 6 \)). Receptor density was assayed by \(\frac{\text{B} }{\text{R}} \text{auwolscine} \) as receptor label. The differences failed to reach statistical significance, but are generally comparable to those of Daul et al. [2]. As shown in table 1, we assayed adenylate cyclase activity in 2 patients of the hypotensive and the normotensive group, prior to and after 2 h of hemodialysis. Adenylate cyclase activity showed a wide variation, the \(\alpha_2 \)-mediated (via inhibitory G proteins) inhibition of basal and stimulated enzyme activity was maintained. Thus, the basic receptor mechanism seems to be unchanged in these patients.

The experiments of Caretta et al. [1] appear to be carefully performed. However, as demonstrated in table 2, a mean value of \(77.21 \)

Table 1. Adenylate cyclase activity of 2 normotensive and hypotensive male patients prior to (P) and after (A) of hemodialysis

<table>
<thead>
<tr>
<th>Patient</th>
<th>Before Hemodialysis</th>
<th>After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normotensive</td>
<td>120 ± 15</td>
<td>110 ± 10</td>
</tr>
<tr>
<td>Hypotensive</td>
<td>90 ± 10</td>
<td>80 ± 5</td>
</tr>
</tbody>
</table>

Table 2. \(\alpha_2 \)-Adrenoceptor densities and radioligand equilibrium dissociation constants (Kd) determined in human platelet membranes by using the antagonists \(\frac{\text{B} }{\text{R}} \text{mas} \), fmol/Kd, nM/mg protein

<table>
<thead>
<tr>
<th>Radioligand Reference</th>
<th>Kd (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\text{B} }{\text{R}} \text{mas})</td>
<td>100</td>
</tr>
</tbody>
</table>

D-35392 Giessen (Germany)
Moreover, since in contrast to our patients [3, 14] plasma noradrenaline was elevated in Caretta’s [1] group, volume depletion as a frequent cause of this phenomenon should be excluded [15]. The circulating noradrenaline level, however, does not necessarily prove an adequate sympathetic response to the hypotensive state as suggested by our own studies on symptomatic hypotensive hemodialyzed patients [14]. fmol/mg protein for the hemodynamically stable patients represents, as far as we know, the lowest standard mean value of thrombo-cyte α2-adrenoceptor density ever reported in the literature. From our experimental experience, treatment of intact thrombocytes with hypotonic buffer alone is insufficient to obtain complete lysis and, thus, a homogeneous membrane preparation. Additional more vigorous methods (i.e., shock-freezing) should be employed and the results checked by light microscopy [13]. An incomplete disruption and staining of cell fragments by the Lowry reagent could have influenced the results of both groups to a different extent. The relatively high nonspecific binding (20% at 5 nM) could also be a consequence of incomplete cell lysis. Therefore, these interesting, unique results concerning α2-adrenoceptor density should be repeated by assaying intact cells or using additional membrane preparation procedures.

References

269