Dear Sir,

The clinical problem of hemodialysis-associated hypotension has partially been resolved by lowering ultrafiltration rates in hypotension-prone patients. However, the mechanisms leading to hypotensive circulatory states during hemodialysis or in the inter-dialytic phase in a subgroup of chronic hemodialyzed patients remain unclear. Caretta et al. [1] found in 10 hypotensive patients an extraordinarily increased number of thrombocyte α₂-adrenoceptors, a moderate elevation of plasma noradrenaline levels as well as a diminished lymphocyte cAMP production in response to isoproterenol. The authors suggested an adrenoceptor adenylate cyclase uncoupling as a mechanism of low blood pressure in these patients.

The results of Caretta’s [1] α₂-adrenoceptor determination are completely at variance to those observed by Daul et al. [2]. Moreover, in a very limited number of patients (n = 10) with hemodialysis-induced hypotension with a mean arterial blood pressure of 102 ± 18 mm Hg prior to and 66 ± 13 mm Hg (mean ± SD) after hemodialysis, we determined an α₂-adrenoceptor density of 192 ± 75 versus 246 ± 110 fmol/mg protein in hemodynamically stable patients (n = 6). Receptor density was assayed by [³H]rauwolscine as receptor label. The differences failed to reach statistical significance, but are generally comparable to those of Daul et al. [2]. As shown in table 1, we assayed adenylate cyclase activity in 2 patients of the hypotensive and the normotensive group, prior to and after 2 h of hemodialysis. Adenylate cyclase activity showed a wide variation, the α₂-mediated (via inhibitory G proteins) inhibition of basal and stimulated enzyme activity was maintained. Thus, the basic receptor mechanism seems to be unchanged in these patients.

The experiments of Caretta et al. [1] appear to be carefully performed. However, as demonstrated in table 2, a mean value of 77.2

| Table 1. Adenylate cyclase activity of 2 normotensive and hypotensive male patients prior to (P) and after (A) of hemodialysis |
|---|---|---|
| Patient | Adenylate cyclase activity (nmol/mg/min) | Difference (P-A) |
| A1 | 0.75 | 0.25 |
| A2 | 1.20 | 0.70 |

Table 2. α₂-Adrenoceptor densities and radioligand equilibrium dissociation constants (Kd) determined in human platelet membranes by using the antagonists ⁴Bmax, fmol/ Kd, nM mg protein

Radioligand Reference
Moreover, since in contrast to our patients [3, 14] plasma noradrenaline was elevated in Caretta’s [1] group, volume depletion as a frequent cause of this phenomenon should be excluded [15]. The circulating noradrenaline level, however, does not necessarily prove an adequate sympathetic response to the hypotensive state as suggested by our own studies on symptomatic hypotensive hemodialyzed patients [14].

fmol/mg protein for the hemodynamically stable patients represents, as far as we know, the lowest standard mean value of thromboocyte α_2-adrenoceptor density ever reported in the literature. From our experimental experience, treatment of intact thrombocytes with hypotonic buffer alone is insufficient to obtain complete lysis and, thus, a homogeneous membrane preparation. Additional more vigorous methods (i.e., shock-freezing) should be employed and the results checked by light microscopy [13]. An incomplete disruption and staining of cell fragments by the Lowry reagent could have influenced the results of both groups to a different extent. The relatively high nonspecific binding (20% at 5 nM) could also be a consequence of incomplete cell lysis. Therefore, these interesting, unique results concerning α_2-adrenoceptor density should be repeated by assaying intact cells or using additional membrane preparation procedures.

References

