Aluminum Urinary Excretion in Patients with Chronic Renal Failure in Treatment with Conservative Conventional Therapy and with Ketoanalog: Research on Fasting Patients and after a Pharmacological Load

B. Di Iorio
G. Gaudiano
C. Altieri
V. Terracciano

Department of Nephrology, Hospital 'D. Lentini', Lauria, Italy

Dott. Biagio Di Iorio, c/o Ospedale 'D. Lentini', viaXXVAprile, I-85045 Lauria (Italy)

Dear Sir,

We have already demonstrated [1] that initial CRF causes an increased urine excretion of Al even after an interruption of months of aluminum (Al) pharmacological intake.

We studied 79 patients (36 M, 43 F), mean(± SD) age 37.66 ± 15.15. They were distributed as follows:

Group A: controls (15 M, 15 F);
Group B: initial CRF, CrCl between 70 and 30 ml/min (10 M, 18 F);
Group C: advanced CFR, CrCl between 30 and 5 ml/min (6 M, 7 F);
Group D: most advanced CFR, CrCl between 12 and 5 ml/min in treatment on an artificial diet of essential amino acids and ketoanalog (5 M, 3 F).

All the patients interrupted their treatment to take the Al hydroxide for at least 3 months.

The results (mean ± SD) are as follows:

Al-s, µg/l:
Group A: 5.65 ± 2.51;
Group B: 6.01 ± 3.80;
Group C: 5.78 ± 4.04;
Group D: 5.67 ± 1.97.

Al-s group A does not demonstrate statistical differences with Al-s of group B, C and D.

Al-u, µg/die:
Group A: 13.09 ± 10.07;
Group B: 22.12 ± 17.25;
Group C: 22.87 ± 24.46;
Group D: 4.81 ± 1.49.

Al-u group A p < 0.01 vs. group B, C and D.

Urinary ratio Al/Cr * 10^-3 mg was:
Group A: 0.0105 ± 0.0096;
Group B: 0.0301 ± 0.0367;
Group C: 0.0351 ± 0.0427;
Group D: 0.0060 ± 0.0023.
Al/Cr group A p < 0.001 vs. B and C; NS vs. D.
Figure 1 shows a straight line of linear regression of Al/Cr vs. Al-u:
y = 8.25x + 7.0
r = 0.41
p < 0.001.
The data of our research show that the initial renal insufficiency is a cause for Al accumulation if there is an overexposure. The increased urinary excretion of Al persists do be high even months after interrupting Al pharmacological administration (indirect sign of stores that still release Al? or increased gastrodualenal absorption for alteration of the gastrointestinal barrier? or substances occurring in the diet, promoting Al gastrodualenal absorption? or PTH? or acidemia?) [2-4].
In addition, the urinary Al/Cr ratio is shown to be a valid indicator of increased Al urinary excretion for values > 0.02 (n.v. appears to be < 0.01). Even in initial renal failure, the Al/Cr ratio increases to 341% as compared to controls, and in advanced renal failure it increases to 398%.
Finally, conservative therapy with ketoanalogs normalizes both Al urinary excretion (even the Al-u values are reduced compared to controls) and the Al/Cr urinary ratio in uremic patients.
Thirty-six patients (n = 10 in group A, B and C; n = 6 in group D) were given an oral load of Al hydroxide (4 g/die for 7 days).
The results are as follows:
Al clearance, ml/min:
Group A: 4.08 ± 1.84 (+148%);
Group B: 2.82 ± 0.77 (-61%);
Group C: 1.56 ± 0.85 (-54%);
Group D: 0.975 ± 0.07 (+5%).
Al Fe, %:
Group A: 2.88 ± 1.22 (+168%);
Group B: 9.26 ± 4.3 (-77%);
Group C: 11.45 ± 8.66 (-49%);
Group D: 30.3 ± 3.25 (-71%).
The data show that the functional reserve of residual nephrons in eliminating Al after a pharmacological load is already reduced in initial CRF. This same functional reserve is not modified by an artificial diet.
Regression of Al/Cr on Al ur
Fig. 1. Al/Cr vs. A-u simple regression straight line, y = 8.25x + 7.0, r = 0.41, p < 0.001.
References

D'lorio/Gaudiano/Altieri/Terracciano
Aluminum Urinary Excretion in CRF