Improvement of Anemia and Secondary Hyperparathyroidism with Erythropoietin Treatment in Hemodialysis Patients

N. Seyrek
S. Paydas
Y. Sagliker

Nephrology Department, Medical Faculty, Çukurova University, Adana, Turkey

Prof. Yahya Sagliker, Çukurova University, Faculty of Medicine, Department of Internal Medicine, TR-01330 Adana (Turkey)

Dear Sir,

Anemia is a severe problem in patients with chronic renal insufficiency. While multiple factors can cause anemia in chronic renal failure, decreased erythropoietin (Epo) production is the most important cause [1]. Another cause may be secondary hyperparathyroidism that has not been clearly explained. It was suggested that parathormone (PTH) may play a role by its direct inhibitory effect on erythropoiesis and/or induction of bone marrow fibrosis [2]. We studied the effect of Epo therapy on secondary hyperparathyroidism in hemodialysis (HD) patients.

Twenty-four HD patients who were treated with Epo, 9 males and 15 females, mean age 45.6 ± 14.5 years (range: 18-75) were included in the study (group I). The control group consisted of 17 age- and sex-matched HD patients who were not prescribed Epo (group II). Patients are dialyzed for 4 h, 2-3 times a week. All patients received calcium carbonate (3-9 g/day), calcitriol (0.25 mg/day), and a low-protein diet consisting of 800 mg phosphorus. Group I patients were treated with Epo 60-70 IU/kg s.c. twice a week. In all patients, serum calcium (Ca), phosphorus (P) and alkaline phosphatase (ALP) values were measured monthly, and N-terminal PTH values were measured every 3 months. The serum values of Ca, P, ALP and PTH at baseline and at the third month were compared in the two groups by the Student’s t test. All the measurements are shown in table 1.

With Epo administration in group I, the mean hematocrit value rose from 18.6 ± 2.6 to 24.8 ± 3.5% (p < 0.001) while the serum value of Ca increased significantly (p <

Table 1. Serum levels of Ca, P, ALP and PTH in groups I and II

<table>
<thead>
<tr>
<th>Group</th>
<th>Epo and (CaCC > 3 + vitamin D)</th>
<th>Baseline</th>
<th>After treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(CaCC > 3 + vitamin D)</td>
<td>8.5 ± 1.2</td>
<td>8.6 ± 1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.4 ± 1.0</td>
<td>9.2 ± 0.8</td>
</tr>
</tbody>
</table>

Ca, mg/dl
Ca, mg/dl
Baseline 489.7 ± 452.3 238.0 ± 437.7
*After treatment 327.4 ± 349.3 230.5 ± 295.8
* p < 0.05; ** p < 0.03; *** p < 0.01; **** p < 0.001.

is excessive PTH secretion in chronic renal failure and that this status may contribute to the anemia seen in uremic patients [3]. Improved anemia in patients with primary hyperparathyroidism has been reported after surgical ablation of parathyroid adenoma [4]. Also, it has been noted that parathyroidectomy may improve the anemia in patients with chronic renal failure. Unfortunately, observations on PTH-related anemia (p < 0.001). The serum values of ALP and PTH decreased significantly (p < 0.001, p < 0.05). The mean serum value of P also decreased, but the difference was not significant (p > 0.05). In group II, the mean serum values of P, ALP and PTH decreased but the difference was not significant with the exception of the serum P values (p < 0.03).

A number of studies have shown that one of the major causes of renal osteodystrophy