A Rapid Method for the Detection of AlphaI65 Hereditary Elliptocytosis

A. Iolascon
E.M. Miraglia del Giudice
S. Perrotta
L. Pinto
S. Cutíllo

Naples

Achille Iolascon, MD, Department of Pediatrics, University of Naples, Via S. Andrea delle Dame 4, I-80138 Naples (Italy)

Hereditary elliptocytosis (HE) designates a group of hemolytic disorders with elliptical erythrocytes due to a weakened horizontal stress-supporting protein network in the membrane skeleton [1]. Most defects leading to spectrin self-association alteration involve the αI spectrin domain. Sp αI/65 is manifested by an abnormal cleavage of the spectrin αI domain upon limited tryptic digestion: the α 65-kD fragment becomes prominent instead of the usual 80-kD fragment [2]. This change resulted in all subjects studied so far from a cleavage following Arg 137 resulting, in turn, from the insertion of a leucyl residue at position 154 of the α-spectrin chain [3]. This relatively common mutation has been found in Africans and Americans Blacks, in North Africans [4] and recently in white Italian people [5]. In all cases investigated, it was associated with the same haplotype (-1 l·, with respect to ihXbal,Pvull and Mspl polymorphisms) [6, 7].

We have used the polymerase chain reaction (PCR) as a rapid means of detecting HE due to spectrin αI/65. Eight individuals from 3 different kindreds referred to us for HE were studied. Biochemical diagnoses were performed after determination of spectrin self-association and partial tryptic digestion as described elsewhere [7]. Dot blot hybridization of amplified DNA confirmed a TTG insertion between codon 153 and 154 [7]. Two primers were selected to allow the amplification of the fourth exon of the α-spectrin gene: sense 5’ TCCCTGCTCCCAGTGTCTGT and anti-sense 5’ GCCCTCCC.ACTCCTCTGTCCC. For amplification we used TaqI polymerase with 30 cycles of denaturation (95 °C for 5 min for the first, and 90 °C for 30 s for the following cycles), annealing at 55 °C for 30 s and extension at 55 °C for 90 s. After amplification, the 242-bp PCR product was digested with the restriction enzyme AlwNI (Biolabs, England).

Fig. 1. AlwNI restricted PCR-amplified DNA product of exon 4 of human α-spectrin gene. Lane 2 = Amplified fragment before digestion (242 bp); lane 1 = fragments obtained after AlwNI digestion in an αI/65 heterozygous and in a normal subject (lane 3).

In normal chromosomes, bands corresponding to 10, 107 and 125 bp were produced after digestion. In HE chromosomes 10- and 232-bp bands appeared because the insertion of a TTG
codon abolishes one normally occurring AlwNI site. All HE αI/65 heterozygous subjects showed the expected pattern (232-, 125-, 107- and 10-bp bands).

On the basis of this rapid technology, we could confirm the homogenous molecular basis of HE αI/65 in Italy. Furthermore, we propose this method for rapid detection of sp αI/65 in those geographic areas with high frequency of this gene [8]. This molecular approach to αI/65 HE is simple, does not require radioisotopes and offers advantages over standard biochemical analysis in terms of rapidity of results.

© 1993 S. Karger AG, Basel 0001-5792/93/0891-0052 $ 2.75/0
Acknowledgements
We are grateful to Prof. Jean Delaunay for his help with this article. This work was partially supported by AIRC and ‘Progetto Fina-lizzato Sanità’ Regione Campania. A.I. is a member of the Italian Pediatric Cancer Research Group.

References