Delayed Postanoxic Encephalopathy with Serial MRI and PET Studies

Hyun-Ji Choa Hahn Young Kima,b Young Soc

aDepartment of Neurology, bCenter for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, and cDepartment of Nuclear Medicine, Konkuk University School of Medicine, Seoul, Korea

The authors present serial MRI and PET studies in the case of a 69-year-old man with delayed postanoxic encephalopathy. Ongoing regional cytotoxic edema was observed in MRI diffusion-weighted images over a 1-year follow-up. The delayed effects of an initial hypoxic injury might be more prolonged than has been previously reported [1, 2].

\textbf{Fig. 1.} Serial MRI studies with FLAIR, diffusion-weighted imaging (\(b = 1,000\) s/mm\(^2\)) and ADC (apparent diffusion coefficients) mapping from left to right at the delayed onset of postanoxic encephalopathy (\(a\)), 6 months (\(b\)) and 13 months (\(c\)). Some lesions in both frontal white matter and the anterior corpus callosum showed persistent decreased diffusivity on diffusion-weighted imaging and ADC maps (0.35 \(\times\) \(10^{-3}\) mm\(^2\)/s and 0.48 \(\times\) \(10^{-3}\) mm\(^2\)/s; mean values of regions of interest indicated by arrowheads in \(b\) and \(c\)).
Fig. 2. Hypometabolic regions in serial PET studies at delayed onset of postanoxic encephalopathy (a), 6 months (b) and 13 months (c). Hypometabolism in both parietotemporal cortices was improved (arrowheads); however, hypometabolism in both frontal cortices was aggravated (arrows). The hypometabolic regions (yellow; color version on-line) are displayed on surface-rendered images at the threshold of p < 0.001, uncorrected (t = 3.61, k = 100).

Acknowledgment

This work was supported by the second phase of the Brain Korea 21 project in 2008.

References
