Red Cell 2,3-Diphosphoglycerate Contents and Oxygen Affinity in Heterozygous Beta-Thalassaemia

G. Ricci
G. Castaldi
G. Zavagli
G. Lupi
A. Turati
T. Bezzi

Istituti di Clinica Medica Generale, Semeiotica Medica, Patologia Speciale Medica, Clinica Pediatrica, Università di Ferrara, e Servizio di Anestesiologia e Rianimazione, Arcispedale Sant’Anna, Ferrara, Italia

Key Words
2,3-Diphosphoglycerate
Oxygen affinity
Thalassaemia

Abstract
Red cell 2,3-diphosphoglycerate and whole blood P50 have been found to be significantly higher in β-thalassaemia heterozygotes than in normal controls. Such increases could be considered as central mechanisms which compensate the mild anaemia of β-thalassaemia carriers.

Materials and Methods
We studied 30 symptom-free β-thalassaemia heterozygotes of both sexes (age: 18–45 years) and 20 normal controls of comparable age. The diagnosis of heterozygous β-thalassaemia was established on the basis of abnormal red cell morphology, decreased osmotic fragility, and increased Hb A2 level. Red cell indices were obtained from Hemalog 8 counter. The red cell 2,3-DPG levels were determined with enzymatic assay (Sigma). Whole blood P50 was measured using the mixing technique [2].

Results
The results obtained are summarized in table I. In β-thalassaemia heterozygotes the mean value of 2,3-DPG (21.1 µmol/g Hb) was significantly higher than in controls (15.4 µmol/g Hb); likewise, the mean level of the whole blood P50 was higher in the thalassaemia group (27.1 mm
Hg) than in the controls (25.8 mm Hg). In both groups no close correlation between 2,3-DPG contents and P50 values was observed.

Discussion
The significant increase of mean red cell 2,3-DPG and whole blood P50 levels in heterozygous y5-thalassaemia suggests that also in this condition an anaemia-compensating central mechanism takes place. This consists of a 2,3-DPG mediated increase of whole blood P50 levels; that is, a shift to the right of the oxygen dissociation curve. Pearson et al. [5] reported in y2-thalassaemia carriers increased contents of 2,3-DPG, but normal P50 levels. However, their study lacked their own controls.

In our study the failure to have found a close correlation between 2,3-DPG and P50 values is not surprising, since changes in 2,3-DPG do not necessarily lead to changes of P50, because of the interference of various factors, such as ATP, pH, and temperature [1].

References