Original Paper

Intervirology 2009;52:49–56
DOI: 10.1159/000214380

Host Genetics, Steatosis and Insulin Resistance among African Americans and Caucasian Americans with Hepatitis C Virus Genotype-1 Infection

A. Danielle Iuliano a Eleanor Feingold b, c Abdus S. Wahed c David E. Kleiner f
Steven H. Belle a, b Hari S. Conjeevaram e Joseph Zmuda a, b T. Jake Liang g
Leland J. Yee a, d for the Virahep-C Study

Departments of a Epidemiology, b Human Genetics, and c Biostatistics, Graduate School of Public Health, and d Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pa., e Gastroenterology, University of Michigan, Ann Arbor, Mich., f National Cancer Institute, and g Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Md., USA

Key Words
Steatosis · Insulin resistance · Hepatitis C virus · Host genetics

Abstract
Hepatic steatosis is the accumulation of fat in liver cells. Insulin resistance (IR) occurs when normal amounts of insulin do not stimulate insulin activity in cells. Both conditions have been described in hepatitis C virus (HCV) infection and are thought to be biologically related. This study examined the association of genetic variants with steatosis and IR among 167 African Americans and 184 Caucasian Americans with HCV genotype-1. Steatosis was defined as at least 5% of fat in cells on liver biopsy. IR was quantified as a score greater than 2 from the Homeostasis Model Assessment, version 2.2 (HOMA2-IR). Associations were investigated by estimating odds ratios separately by race. Statistically significant associations (p < 0.05) were observed for variants in interleukin-10 (IL10), leptin receptor (LEPR), interleukin-6 (IL6) and transforming growth factor beta-1 (TGF-β1) for both outcomes. Some significant interactions were observed between IL10, LEPR and TGF-β1 polymorphisms and HOMA2-IR scores when examining steatosis. The interaction of HOMA2-IR and IL10 was consistent in both races whereas for LEPR and TGF-β1 the interactions were statistically significant in only one of the racial groups. These results could imply that some IL10, LEPR and TGF-β1 polymorphisms may modify an association between steatosis and IR.

Introduction
Hepatic steatosis is characterized by the accumulation of fat in the liver and diagnosis is generally made by the histological evaluation of liver biopsies and the quantification of the percentage of fat in liver cells [1]. The prevalence of steatosis has been reported to be as low as 30% and as high as 84% among chronic hepatitis C virus (HCV) patients [2–6]. Steatosis occurs less frequently in the general population (31%) compared to chronic HCV patients [7]. The mechanisms of hepatic steatosis are thought to be multifactorial and the presence of insulin resistance (IR) may be associated with the development of steatosis [8].

African Americans have a lower prevalence of steatosis than Caucasian Americans despite having a higher BMI, which is associated with steatosis, although the mechanisms are not fully understood [7, 9]. Steatosis may
also adversely influence HCV sustained virologic response [6, 10, 11]. One study showed that HCV genotype-1 patients with steatosis achieved sustained virologic response less frequently (40%) compared to those without steatosis (63%) [11].

IR is a condition in which normal amounts of insulin are insufficient to activate insulin function in cells, especially fat, muscle and liver cells, and which results in increased glucose levels [12, 13]. IR may be quantified by the Homeostasis Model Assessment of Insulin Resistance index (HOMA-IR) [14]. Patients with chronic HCV infection were observed in one study to have higher HOMA-IR scores compared to healthy controls [15]. Factors associated with IR include African American race, obesity, older age, fibrosis and cirrhosis [16, 17]. Presence of IR may negatively impact the function of interferon therapy and the ability to achieve sustained virologic response in HCV patients especially those infected with genotype-1 [13, 16].

In this study we hypothesized that genetic variants in collagen type-1 alpha-1 (COL1A1), cytochrome P450 2E1 (CYP2E1), interleukin-6 (IL6), interleukin-10 (IL10), interleukin-1 receptor type-1 (IL1R1), leptin receptor (LEPR), chemokine (C-C motif) ligand 2 (MCP1/CCL2), chemokine (C-C motif) ligand 8 (MCP2/CCL8), tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta-1 (TGF-β1) are associated with steatosis or IR in African Americans or Caucasian Americans infected with HCV genotype-1.

Methods

Study Population and Clinical Data

Data were from the Study of Viral Resistance of Antiviral Therapy of Chronic Hepatitis C (Virahep-C). Virahep-C design and primary outcomes have been described elsewhere [3]. Briefly, 401 HCV treatment naïve patients were enrolled in the study, among whom 374 (194 Caucasian Americans and 180 African Americans) agreed to participate in the host genetics ancillary study and had DNA available for genotyping. Twelve individuals identified as Hispanic and 11 individuals using exogenous insulin were removed from analyses, resulting in a final sample size of 351.

Participants had a liver biopsy within 18 months of study enrollment [3, 18]. Liver biopsies were scored by a single pathologist, who was blinded to patient outcome and clinical status [3, 18]. Biopsies were assessed for the severity of hepatitis C by grading inflammation and staging of fibrosis using the modified histologic activity index scoring system [19]. Steatosis was also scored on a scale of 0–4 according to the percentage of cells with fat [4]. For this study, IR was quantified by using the HOMA-IR calculator, version 2.2, released in 2004 and downloaded from www.dtu.ox.ac.uk [20, 21].

Single Nucleotide Polymorphism Selection and Genotyping

The genes examined were chosen from a list of genes already genotyped as part of the Virahep-C host genetics study. Although the original study selected candidate genes for their potential involvement in the response to therapy or liver fibrogenesis, a number of the targeted genes may also be involved with steatosis or IR and were included in the present study.

Two different approaches were utilized in the selection and genotyping of single nucleotide polymorphisms (SNPs) and were based on publically available genetic information and genotyping technology at the time each component was completed. The first method identified SNPs for IL6, IL10, TGF-β1 and TNF-α and the subsequent genotyping by allelic discrimination is described elsewhere [18]. Briefly, SNPs were selected and allelic discrimination employing the ABI 7000 Sequence Detection System with TaqMan technology (Applied Biosystems Inc., Foster City, Calif., USA) was used to genotype the SNPs [18]. The second method for SNP selection and genotyping was utilized for COL1A1, CYP2E1, IL1R1, LEPR, MCP1/CCL2 and MCP2/CCL8. The SNP selection methods and genotyping using the Illumina BeadArray technology (Illumina, San Diego, Calif., USA) have been described elsewhere [22].

Data Categorization

Steatosis was dichotomized with those having at least 5% fat indicative of the presence of steatosis. For this study, IR was defined as a HOMA2-IR score greater than 2.0 based on a previous study from the Virahep-C cohort [4]. An a priori decision was made that if the less common homozygote genotype had a minor allele frequency of less than 5% it was combined with the heterozygote genotype.

Age, BMI, baseline viral level, weekly alcohol consumption, ALT levels, AST levels, cholesterol levels, triglyceride levels, modified histologic activity index score and Ishak fibrosis score (centered at their mean values), history of diabetes and HCV subtype were examined as potential risk factors for steatosis and IR. Steatosis was included as a predictor for IR, and IR was included as a possible risk factor for steatosis using the continuous natural log of HOMA2-IR scores centered at the mean. Self-reported race was used in this study due to a strong correlation between individual admixture and self-reported race [18].

Genetic Analytical Methods

Genotype and allele frequencies as well as Hardy Weinberg Equilibrium x^2 tests were calculated by race for each SNP. A genotype call rate, defined as the percentage of individuals where a genotype could be determined compared to the total number of individuals where genotyping was attempted, was calculated for each race group. Minor allele frequencies were examined by race for SNPs with a frequency greater than 5%. The Tagger Program in the Haploview Software Suite version 4.0 was used to calculate the amount of variation accounted for in the gene (r^2) by the tagged SNPs separately by race [23]. This analysis was done to evaluate how well the SNP selection methods utilized for this study captured the common genetic variation compared to the more recently available HapMap Phase II data.

Statistical Analyses

Distribution of demographic characteristics and risk factors for steatosis and IR were compared between African Americans
and Caucasian Americans using appropriate association tests. Logistic regression was used and the log odds of the outcome (e.g., steatosis) were modeled as a linear function of the predictors. Models were adjusted for potential confounding variables and backward elimination was used to remove those that did not significantly contribute to the prediction of the outcome. Steatosis was retained in the model predicting IR because steatosis and IR are biologically related [24] and it is unclear if steatosis contributes to the occurrence of IR or vice versa.

Interactions between HOMA2-IR scores (when predicting steatosis) or steatosis (when predicting IR) and the genetic variant were tested, and the log likelihood ratio test was used to assess interactions. Nonsignificant (p > 0.05) interactions were not included in the model. Statistical significance was set at α = 0.05. The SAS®/STAT software system version 9.1.3 was used to complete analyses (SAS Institute Inc., Cary, N.C., USA).

Results

Population Characteristics

Comparisons of demographic characteristics by race are shown in table 1. There were 53 individuals who had missing data for HOMA2-IR because their insulin and glucose levels were not fasting or were not available because glucose or insulin levels were too high for the calculator.

Genotype frequencies, call rate and p values from Hardy Weinberg equilibrium tests are provided in online supplementary table S1 (for all online supplementary material see www.karger.com/doi/10.1159/000214380). The selected SNPs for IL6, IL10, TGF-β1 and TNF-α accounted for 38% (11–85%) of the common genetic variation in African Americans and 47% (7–81%) in Caucasian Americans. The selected SNPs for COL1A1, CYP2E1, IL1R1, LEPR, MCP1 and MCP2 accounted for 19% (0–40%) of the common genetic variation in African Americans and 39% (16–83%) in Caucasian Americans.

Associations with Steatosis

The final model for steatosis included BMI, weekly alcohol consumption, baseline viral level, Ishak fibrosis score and natural log transformed HOMA2-IR scores along with the genetic variant, and results for IL6, IL10, LEPR and TGF-β1 polymorphisms are reported in table 2. CYP2E1, IL1R1, MCP2/CCL8 and TNF-α SNPs were not statistically significantly associated with steatosis. Haplotype analyses for the associations with steatosis yielded similar results to individual SNP analyses and are therefore not reported.

Caucasian Americans possessing the IL6 rs2069845-AG or GG genotype had significantly higher odds of steatosis (OR = 2.5, 95% CI = 1.1–6.0) compared to those with the AA genotype (table 2). No significant associations were observed for this polymorphism in African Americans and the direction of the odds ratio was different. The odds of steatosis among African Americans with the TGF-β1 rs2278422-GG genotype were 4.4 times the odds of steatosis among African Americans with the CC or CG genotype and a similar, although non-significant, trend was observed among Caucasian Americans (table 2). A statistically significant interaction was observed in the prediction of steatosis between HOMA2-IR scores and TGF-β1 rs2241716 indicating that the relationship between steatosis and HOMA2-IR scores differs by genotype. Specifically, higher odds of steatosis were observed for a 1 unit higher HOMA2-IR score for African Americans possessing the TGF-β1 rs2241716-GG genotype.
(OR = 3.3, 95% CI = 1.6–6.9) compared to the odds for a 1 unit higher HOMA2-IR score among those with the AA or AG genotype (OR = 0.7, 95% CI = 0.2–1.9).

Statistically significant interactions between **IL10** SNPs and HOMA2-IR scores were observed with respect to steatosis and seen in both Caucasian Americans and African Americans. The odds of steatosis for a 1 unit higher HOMA2-IR score for Caucasian Americans possessing the **IL10 rs3024496-CT** (OR = 7.7, 95% CI = 2.3–25.4) or TT (OR = 9.3, 95% CI = 1.5–59.2) genotype were significantly higher than the odds for a 1 unit higher HOMA2-IR score for those with the CC genotype (OR = 1.5, 95% CI = 0.5–4.2). In African Americans, the odds of steatosis for the **IL10 rs3024496-CT** genotype with a 1 unit higher HOMA2-IR score were higher (OR = 3.4, 95% CI = 1.3–8.8) compared to the odds for HOMA2-IR for...

Table 2. Adjusted ORs for steatosis for selected SNPs and for the interaction between SNPs and HOMA2-IR among African Americans and Caucasian Americans

	African Americans^a (n = 167)		Caucasian Americans^a (n = 184)						
----------------------	--		--						
	n	genetic variant	HOMA2-IR^b	p	n	genetic variant	HOMA2-IR^b	p	
	OR (95% CI)	p							
IL6 rs1880242									
GG/GT	52	1.00	2.11 (1.18–3.79)	0.01	140	1.00	3.01 (2.3–25.4)	0.001	
TT	115	1.28 (0.57–2.89)	0.55	43	0.78 (0.29–2.06)	0.61	3.01 (1.4–6.29)	0.003	
IL6 rs2069837									
AA	132	1.00	2.10 (1.17–3.79)	0.01	159	1.00	3.12 (1.53–6.37)	0.002	
AG/GG	34	0.81 (0.32–2.04)	0.65	25	0.82 (0.23–2.91)	0.76	3.12 (1.53–6.37)	0.002	
IL6 rs2069845									
AA	75	1.00	2.14 (1.19–3.86)	0.01	60	1.00	2.98 (1.4–6.16)	0.003	
AG/GG	92	0.86 (0.40–1.86)	0.70	123	2.52 (1.06–6.00)	0.04	2.98 (1.4–6.16)	0.003	
IL10 rs3024496									
CC	28	1.00	0.27 (0.05–1.31)	0.10	50	1.00	1.46 (0.52–4.15)	0.47	
CT	82	2.02 (0.64–6.36)	0.23	86	3.27 (1.06–10.09)	0.04	7.66 (2.31–25.42)	0.001	
TT	57	3.98 (1.15–13.77)	0.03	48	1.69 (0.48–5.92)	0.41	9.30 (1.45–59.53)	0.02	
IL10 rs1800890									
AA/AT	70	1.00	2.16 (1.20–3.88)	0.01	116	1.00	3.19 (1.57–6.47)	0.001	
TT	97	1.60 (0.73–3.48)	0.24	67	1.00 (0.41–2.43)	0.99	3.19 (1.57–6.47)	0.001	
LEPR rs1137100									
AA	112	1.00	2.25 (1.22–4.15)	0.01	100	1.00	3.21 (1.58–6.54)	0.001	
AG/GG	55	0.25 (0.11–0.58)	0.001	83	0.90 (0.40–2.05)	0.81	3.21 (1.58–6.54)	0.001	
LEPR rs1805096									
CC	52	1.00	0.27 (0.05–1.31)	0.10	74	1.00	2.01 (0.75–5.40)	0.17	
CT	83	2.11 (0.87–5.13)	0.10	70	4.36 (1.21–15.73)	0.03	29.60 (4.27–205.2)	0.001	
TT	32	0.63 (0.21–1.90)	0.42	38	2.36 (0.76–7.33)	0.14	1.01 (0.31–3.32)	0.98	
LEPR rs1892534									
AA	33	1.00	2.16 (1.20–3.88)	0.01	40	1.00	1.20 (0.37–3.90)	0.76	
AG	83	2.98 (1.07–8.33)	0.04	69	1.79 (0.45–7.16)	0.41	26.22 (3.81–180.4)	0.001	
GG	51	1.55 (0.52–4.62)	0.43	74	0.44 (0.15–1.34)	0.15	1.97 (0.74–5.25)	0.18	
TGF-β rs2278422									
CC/CG	85	1.00	3.10 (1.59–6.05)	0.001	130	1.00	3.25 (1.59–6.63)	0.001	
GG	82	4.42 (1.84–10.65)	0.001	54	1.50 (0.62–3.60)	0.37	3.25 (1.59–6.63)	0.001	
TGF-β rs2241716									
AA/AG	16	1.00	0.65 (0.22–1.94)	0.44	0	1.00	2.35 (1.59–6.63)	0.001	
GG	151	1.48 (0.47–4.62)	0.50	183	1.00	3.25 (1.59–6.63)	0.001		

a Model adjusted for the genetic variant, centered Ishak fibrosis score, centered weekly alcohol consumption, centered ln HOMA2-IR score, centered BMI, centered log10 baseline viral levels and interaction between the genetic variant and ln HOMA2-IR score (where significant).

b Adjusted OR for HOMA2-IR score when no statistically significant interaction present. If a statistically significant interaction, OR for HOMA2-IR score within a given genetic variant genotype.

c Statistically significant log likelihood ratio test for the interaction between the genetic variant and ln HOMA2-IR scores.

d Selected results are presented, results for all SNPs available in supplementary online materials.
those with the CC genotype (OR = 0.3, 95% CI = 0.1–1.3). In Caucasian Americans, the \textit{IL10} rs3024496-CT and TT genotypes have similar increasing log odds of steatosis and the CC genotype has more slowly increasing log odds of steatosis as the HOMA2-IR score increases. Individuals who possess the \textit{IL10} rs3024496-associated genotypes and have higher HOMA2-IR scores also have higher odds of steatosis compared to those with lower HOMA2-IR scores.

African Americans with the \textit{LEPR} rs1137100-AG or GG genotype had 0.3 (95% CI = 0.1–0.6) times lower odds of steatosis compared to those with the AA genotype (table 2). A similar, although nonsignificant, trend was observed for Caucasian Americans.

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
SNP & African Americans\(^a\) (n = 142) & & & Caucasian Americans\(^a\) (n = 156) & \\
& n & OR & 95% CI & p & n & OR & 95% CI & p \\
\hline
\textit{IL6} rs1880242 & & & & & & & & & \\
GG/GT & 45 & 1.00 & & & 119 & 1.00 & & & \\
TT & 97 & 1.06 & 0.47–2.39 & 0.89 & 36 & 0.29 & 0.10–0.80 & 0.02 \\
\hline
\textit{IL6} rs2069387 & & & & & & & & & \\
AA/AG & 112 & 1.00 & & & 135 & 1.00 & & & \\
GG & 29 & 2.07 & 0.81–5.28 & 0.13 & 21 & 0.24 & 0.06–0.88 & 0.03 \\
\hline
\textit{IL6} rs206945 & & & & & & & & & \\
AA & 63 & 1.00 & & & 52 & 1.00 & & & \\
AG/GG & 79 & 1.59 & 0.73–3.48 & 0.24 & 103 & 1.70 & 0.75–3.85 & 0.20 \\
\hline
\textit{IL10} rs3024496 & & & & & & & & & \\
CC & 20 & 1.00 & & & 44 & 1.00 & & & \\
CT & 70 & 0.26 & 0.08–0.82 & 0.03 & 75 & 0.52 & 0.22–1.23 & 0.14 \\
TT & 52 & 0.41 & 0.12–1.41 & 0.16 & 37 & 0.47 & 0.17–1.33 & 0.16 \\
\hline
\textit{IL10} rs1800890 & & & & & & & & & \\
AA/AT & 55 & 1.00 & & & 102 & 1.00 & & & \\
TT & 87 & 0.39 & 0.18–0.88 & 0.02 & 53 & 0.65 & 0.29–1.43 & 0.28 \\
\hline
\textit{LEPR} rs1137100 & & & & & & & & & \\
AA & 93 & 1.00 & & & 88 & 1.00 & & & \\
AG/GG & 49 & 1.77 & 0.78–4.03 & 0.17 & 67 & 1.44 & 0.69–2.98 & 0.33 \\
\hline
\textit{LEPR} rs1805096 & & & & & & & & & \\
CC & 44 & 1.00 & & & 62 & 1.00 & & & \\
CT & 68 & 0.65 & 0.27–1.60 & 0.35 & 58 & 0.54 & 0.23–1.28 & 0.16 \\
TT & 30 & 1.88 & 0.65–5.44 & 0.24 & 34 & 1.05 & 0.41–2.74 & 0.91 \\
\hline
\textit{LEPR} rs1892534 & & & & & & & & & \\
AA & 31 & 1.00 & & & 36 & 1.00 & & & \\
AG & 68 & 0.38 & 0.14–1.02 & 0.06 & 57 & 0.57 & 0.22–1.50 & 0.25 \\
GG & 43 & 0.62 & 0.22–1.78 & 0.38 & 62 & 1.00 & 0.39–2.57 & 0.99 \\
\hline
\textit{TGF-β1} rs2278422 & & & & & & & & & \\
CC/CG & 76 & 1.00 & & & 111 & 1.00 & & & \\
GG & 66 & 0.38 & 0.17–0.89 & 0.03 & 45 & 0.35 & 0.14–0.87 & 0.02 \\
\hline
\textit{TGF-β} rs2241716 & & & & & & & & & \\
AA/AG & 16 & 1.00 & & & 0 & 1.00 & & & \\
GG & 126 & 1.32 & 0.41–4.29 & 0.64 & 155 & & & & \\
\hline
\end{tabular}
\caption{Adjusted ORs by selected SNPs and IR in African Americans and Caucasian Americans}
\end{table}

Selected results are presented here, results for all SNPs available in supplementary online materials.

\(^a\) Model adjusted for the genetic variant, centered Ishak fibrosis score, centered body mass index, steatosis, centered age and centered triglyceride levels.

\(^b\) Model could not be estimated because minor allele frequency <5% for the SNP.

\(^c\) Homozygote genotype combined with heterozygote genotype to estimate association.
possessing the LEPR rs1892534-AG genotype had triple the odds of having steatosis compared to those with the AA genotype (table 2). For a 1-unit increase in HOMA2-IR score among Caucasian Americans, the odds of steatosis for LEPR rs1892534-AG genotype were 29.6 (95% CI = 4.3–205.2) times greater compared to those with the AA genotype (OR = 1.2, 95% CI = 0.4–3.90). The odds of steatosis for a 1-unit higher HOMA2-IR score among Caucasian Americans possessing the LEPR rs1805096-CT genotype were significantly higher (OR = 26.2, 95% CI = 3.8–180.4) than the odds for a 1-unit higher HOMA2-IR score among those with the CC genotype (OR = 2.0, 95% CI = 0.8–5.4). Results for SNPs not presented in table 2 are available in online supplementary table S2.

Associations with Insulin Resistance

No statistically significant SNP associations with IR were observed in either race group for COL1A1, CYP2E1, IL1R1, MCP1/CCL2, MCP2/CCL8 or TNF-α. Additional SNP results not described in table 3 are presented in the supplementary online tables. Haplotype analysis for the association with IR yielded results similar to those from individual SNP analyses and are not presented. No significant interactions between the genetic variants and steatosis contributed to associations with IR.

African Americans with the IL10 rs3024496-CT genotype (OR = 0.3, 95% CI = 0.1–0.8) or the rs1800890-TT genotype (OR = 0.4, 95% CI = 0.2–0.9) had lower odds of IR compared to the rs3024496-CC genotype or the rs1800900-AA or AT genotype. A similar trend for these SNPs was observed among Caucasian Americans. Caucasian Americans with the IL6 rs1880242-CT genotype had 0.3 times lower odds of IR compared to Caucasian Americans with the GG or GT genotype. For TGF-β1 rs2278422, African Americans with the GG genotype had 0.2 times lower odds of IR (95% CI = 0.2–0.9) and Caucasian Americans with the GG genotype had 0.4 times lower odds of IR (95% CI = 0.1–0.9) compared to those with either the CC or CG genotype.

Discussion

This study investigated the association of host genetic markers with steatosis and IR for African American and Caucasian American patients with HCV genotype-1 infection. This study stratified all data by race as SNPs may have different effects in different ethnic groups based on their different population histories. Some associations identified in this study were only statistically significant in one race group or the direction of the association was different by race. One explanation may be that the associated genetic variants were not directly affecting the conditions, but rather were in linkage disequilibrium with functional genetic variants. If this were the case, the different patterns of results may be explained by different linkage disequilibrium patterns or the different population histories of African Americans and Caucasian Americans. For example, an associated SNP could be “tagging” a causal genetic variant in one population that is not present in another population. Alternatively, different relatively new functional variants could lie on the same ancestral haplotype in different populations.

The findings from this study imply that some genetic variants may moderate or influence the association between steatosis and IR. For example, the association between steatosis and IR may be affected by IL10 rs3024496. Those with higher HOMA2-IR scores who possess the CT or TT genotype were more likely to also have steatosis compared to those with the CC genotype and higher HOMA2-IR scores. IL10 rs3024496 is located in the 3′ untranslated region of the gene and has no known function [25]. Future work aimed at understanding the biological function of associated genetic variants may provide more information about how this genetic variant influences steatosis or IR.

For the LEPR gene, there were main effects associations of SNPs with steatosis or IR. The LEPR rs1137100-AG or GG genotype was associated with lower odds of steatosis. Two statistically significant interactions were also observed between LEPR SNPs and HOMA2-IR scores with respect to steatosis in Caucasian Americans. LEPR rs1137100 is located in the coding region and may contribute to splicing regulation [25]. LEPR rs1892534 is located in the 3′ downstream untranslated region with no known function [25]. Further understanding of the function of the associated genetic variants may explain the relationship with steatosis or IR in HCV infection.

There were statistically significant associations between TGF-β1 SNPs and steatosis or IR indicating that polymorphisms in this gene may be important in understanding these conditions in HCV infection. In particular, possession of the TGF-β1 rs2278422-GG genotype indicated lower odds of IR for both race groups compared to the CC or CG genotype. TGF-β1 rs2278422 is located in the intron region with no known function [25]. In addition, one significant interaction was observed in African Americans between TGF-β1 rs2241716-GG genotype and higher HOMA2-IR scores such that higher odds of steatosis were observed than expected for the main ef-
fects of HOMA2-IR scores and the genotype alone. TGF-β1 rs2241716 is located in the intron region and predicted to be an intronic enhancer which could change how the encoded protein is produced [25].

Future studies are needed to replicate our findings; however, a similar sample that included a sufficient number of African Americans was not available. Another limitation was the different methods utilized for selecting genetic variants. At the time the selection of SNPs was completed, HapMap Phase I was the main source of reference population data and was not able to identify SNPs to account for more of the common genetic variation observed in different racial groups. Thus, the amount of common variation characterized by the tag-SNPs selected is not as high as those expected by the second phase of HapMap which has the ability to better capture the common variation in the genes. Additionally, due to the hypothesis-generating nature of this study, adjustment for multiple comparisons was not completed and future studies are needed to confirm these findings. Nevertheless, our SNP results provide useful information about genetic variant associations with the conditions in HCV infection.

In conclusion, this study identified host genetic associations with steatosis or IR in African Americans and Caucasian Americans with HCV genotype-1. Significant associations between IL6, IL10, LEPR or TGF-β1 and steatosis or IR were identified and the relationship between IR and steatosis may be moderated by genetic variants such as SNPs in the IL10 gene.

Acknowledgments

This clinical study was a cooperative agreement funded by the NIDDK and co-funded by the National Center on Minority Health and Health Disparities (NCMHD), with a Cooperative Research and Development Agreement (CRADA) with Roche Laboratories, Inc. Grant numbers: U01 DK60329, U01 DK60340, U01 DK60324, U01 DK60344, U01 DK60327, U01 DK60335, U01 DK60352, U01 DK60342, U01 DK60345, U01 DK60309, U01 DK60346, U01 DK60349, U01 DK60341. Other support for this study was from the National Center for Research Resources (NCRR), the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, General Clinical Research Centers Program grants: M01 RR0645 (New York Presbyterian), M02 RR00079 (University of California, San Francisco), M01 RR16500 (University of Maryland), M01 RR000042 (University of Michigan), M01 RR00046 (University of North Carolina). Additional support was provided by IKL2 RR024154–01 (to Leland J. Yee) from the National Institutes of Health.

Members of Viralhep-C contributing to the study include: from the Beth Israel Deaconess Medical Center, Boston, Mass.: Ne-
References

