New Approaches to Body Composition Research: A Reexamination of Two-Compartment Model Assumptions

S.B. Heymsfield
S. Lichtman

Department of Medicine, Columbia University College of Physicians and Surgeons, Obesity Research Center, St. Luke’s-Roosevelt Hospital Center, Weight Control Unit, New York, USA

Requests for reprints to: Steven B. Heymsfield, MD, Department of Medicine, Obesity Research Center, St. Luke’s-Roosevelt Hospital Center, Weight Control Unit, 411 West 114th Street, New York, NY 10025 (USA)

Overview

Major new technological advances are now expanding our ability to study human body composition in vivo. The wealth of new information derived from these methods is advancing our understanding of growth, aging, and many pathological states. Our focus in this review is to demonstrate how these powerful new methods can be effectively used to enlighten our understanding of widely used older technologies. Specifically, our discussion centers on the 2-compartment body composition methods used effectively over the last 4 decades. Proceeding in several areas of nutrition and metabolic research requires a critical examination of 2-compartment model validity. Unfortunately, until recently a project of this type was possible solely through cadaver analysis. Only a few such postmortem studies have been performed due to the extreme difficulty in executing and interpreting this type of research. Our review demonstrates that for the first time a detailed compartmental analysis can be performed in vivo that provides the information needed to critically examine 2-compartment model assumptions.

Body Weight and Compartments

Body weight is the primary body composition measurement. It represents the sum total of all somatic chemical constituents. Further partitioning of body weight into subcompartments (C) requires additional measurements (M) such that:

\[M = C - 1.\]

Hence a 2-compartment body composition model requires 1 measurement in addition to body weight. A 4-compartment model is based upon 3 measurements, and so on. Most investigators currently rely upon a 2-compartment model in which body weight is divided into fat and fat-free components. The main reason for this choice is that physiologically these 2 fractions of body weight are of primary relevance to workers in the areas of nutrition and metabolism. Another reason for choosing a 2-compartment model is convenience; the measurement needed in addition to body weight is usually simple, safe, and reliable. Much of our current knowledge of body composition and related energy expenditure is founded on 2-compartment studies.

2-Compartment Models

There are 3 main techniques of fractionating body weight into fat and fat-free components: hydrodensitometry [1], whole body counting for 40K [2], and evaluation of total body water...
(TBW) [3]. Hence measurement of body density (Db), 40K, and TBW allow calculation of the percentage weight as fat and fat-free body mass (FFM).

Other methods of deriving 2-compartments are also available that share in common calibration against the above techniques. For example, skinfolds [4], body impedance analysis [5], and total body electrical conductivity [6] each measure a correlate of fat and FFM. Prediction equations for fat and FFM are developed by calibration against 1 of the 3 reference methods. A central reliance is thus placed upon the primary measurement technique’s accuracy.

A worthy digression at this point is to explore the scientific foundations of 2-compartment methods. One example is selected for convenience, hydrodensitometry, although similar reasoning applies to 40K and TBW.

Hydrodensitometry
At the beginning of this century methods were sought for quantifying corpulence. The concept emerged that body specific gravity was inversely related to fatness. Unfortunately, technical problems beset investigators during this period, and no important advances were made until the 1940s. Improving on densitometry technology, Behnke and his colleagues in 1942 were able to accurately measure Db [7]. In this and follow-up publications [8] the concept was advanced that fat and lean tissues each had a relatively constant density (df and dffm). Estimates of these densities were made by Behnke which were based upon approximate chemical compositions in the case of lean and on previous animal experiments in the case of fat. Once Db is measured by hydrodensitometry, then fat and FFM are readily calculated based upon the assumed df and dffm. Subsequent workers focused on improving the df and dffm estimates [8,9]. Our emphasis here is on human studies, as one could argue that animal results cannot be extrapolated with confidence to man. In the 1950s Keys, Brozek, Fidanza, and others at the University of Minnesota [9,10] examined the estimated df and dffm in detail. Fidanza, using surgical specimens [10], found an average df of 0.9007 g/cc at 36°C. Unlike the largely single component fat (i.e. triglyceride), FFM represents a chemically diverse grouping of fluids and tissues. The Minnesota investigators developed a 4-compartment model based upon the major chemical categories that included fat (F), Water (A), protein (P), and mineral (M). The densities of A and P at body temperature were known, and the density of F was experimentally determined by Fidanza [10]. Mineral was divided into 2 fractions, osseous and cellular (M0, Mc). Based upon the best estimates of the time, densities for M0 and Mc were calculated from the individual mineral components of bone and cells [9]. These densities and their reciprocal, specific volume, are presented in table 1. At the time there were 5 cadavers on whom the chemical composition was known in detail (table 2). Four were males and 1 was a female. One male with clearly abnormal hydration and the female were eliminated from the analysis. Through several assumptions the fractions (f) of body weight represented by F, A, P, M0, and Mc were calculated for the 3 males (table 2). Body density and dffm were then calculated based upon the equation presented in table 3. The dffm of 1.10 g/cc agreed exactly with Behnke’s estimated 1.1 g/cc. The now universally used Siri equation [11] for calculation fat from Db is based upon these results, that is, a df and dffm of 0.90 and 1.10 g/cc, respectively. Today hydrodensitometry is universally applied as either the primary or calibration body composition method. However, some appropriate concern focuses on the assumed dffm. Several studies suggest that blacks have a higher mineral mass than whites, a finding which implies a relatively increased
dffm is lower in women. Aging, especially in women, is associated with a loss in mineral and a potential decrease in dffm. Hydration may increase in the obese, resulting in a lowering of dffm. Ethnicity, gender, aging, and obesity are all thus associated with potential changes in lean composition that could alter the assumed dffm density of 1.10 g/cc.

The magnitude of error in fat analysis caused by an inaccurate dffm is shown in figure 1. While our emphasis here is on hydrodensitometry, similar questions circumscribe other 2-compartment body composition methods. A major development over the last decade are multicompart-Table 1. Densities and specific volumes of chemical constituents at 36 °C Modified from [4]

<table>
<thead>
<tr>
<th>Substance</th>
<th>Density, g/cc</th>
<th>Specific volume, g/cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Until recently the most elusive body compartment was mineral. Now several options are available for determination of M₀ and Mₑ. First, whole body counting combined with delayed gamma neutron activation analysis allows accurate measurement of Na, K, Ca, P, and Cl in vivo [4]. As nearly all calcium is in bone, the M₀ fraction can be calculated from the known ratio of Ca to bone ash. The remaining Mₑ can be calculated by first subtracting the amount of Na, Cl, and K in bone ash (table 4). The remainder is assumed to represent cell mineral. The cell K is used to calculate intracellular P, which is then converted to phosphate (table 4). Mₑ is the sum of bone ash-adjusted Na, K, and Cl plus phosphate. Other minerals and trace elements are assumed to represent a negligible fraction of body weight.

Fig. 1. Effect of variation in the density (D) of lean body mass on percent body fat estimated from densitometry. From [21]

Table 3. Equation for calculating the density of a mixture of two or more substances

\[M = \sum_{i=1}^{n} \left(\frac{M_i}{V_i} \right) \]

\[\sum_{i=1}^{n} \frac{M_i}{V_i} = \frac{M_t}{V_t} \]

*M = mass of substance i and total (t) mass; SV = specific volume at 36 °C (see table 1).

Table 2. Body composition from direct analysis of 3 male cadavers as reported by Brozek et al [9]

<table>
<thead>
<tr>
<th>Age, years</th>
<th>Sex</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm/kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Fat-free weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water</td>
<td>fat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
protein ash
water
protein ash

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>M</td>
<td>168.5</td>
<td>53.8</td>
<td>55.1</td>
<td>19.4</td>
<td>18.6</td>
<td>5.4</td>
<td>68.4</td>
<td>23.1</td>
</tr>
<tr>
<td>35</td>
<td>M</td>
<td>183</td>
<td>70.6</td>
<td>67.9</td>
<td>12.5</td>
<td>14.4</td>
<td>4.8</td>
<td>77.6</td>
<td>16.5</td>
</tr>
<tr>
<td>25</td>
<td>M</td>
<td>179</td>
<td>71.8</td>
<td>61.8</td>
<td>14.9</td>
<td>16.6</td>
<td>7.5</td>
<td>72.6</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Heymsfield, Lichtman: New Approaches to Body Composition Research: A Reexamination of Two-Compartment Model Assumptions

Another new approach to estimating mineral is based upon dual photon absorptiometry (DPA) [13]. DPA systems of increasing sophistication are now becoming available at many medical centers. Unlike neutron activation analysis, the DPA approach is generally less expensive and delivers a smaller dose of ionizing radiation.

The St. Luke’s-Roosevelt system is a Lunar DP-4, which operates on the two energy levels of gadolinium. Through use of appropriate software, the system partitions body weight into total body bone ash (TBBA) and soft tissue mass. The scan time is about 50 min and radiation exposure is 5 mrem. The accuracy of DPA bone ash estimates is reportedly ± 5–7% based upon skeletal and intact cadaver studies [17]. The precision of repeated TBBA measurements on consecutive days is ± 1%. At our center we correlated DPA-derived TBBA with total body Ca measured by delayed gamma neutron activation analysis. Thirteen healthy subjects who were at or near their desirable weight underwent the TBCa measurement at Brookhaven National Laboratory and the TBBA study at St. Luke’s-Roosevelt Hospital. The results are shown in figure 2. Note that TBBA and TBCa are highly correlated (r=0.96, p < 0.001) and the ratio TBCa/TBBA of 0.34 is similar to the calcium content of bone ash. DPA can thus provide M0 by correction of TBBA for labile components lost during ashing. We currently use the factor of 1.043 suggested by Brozek [9], although clearly more work is needed in order to refine this estimate.

Table 4. Cell mineral equations

Compositition of adult femur (cortex, g/kg):

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>Na</td>
<td>K</td>
<td>Cl</td>
<td>P</td>
</tr>
<tr>
<td>264</td>
<td>4.6</td>
<td>2.0</td>
<td>1.8</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Cell mineral equation (g):

\[\text{Na} = \text{TBNa} - \text{TBCa} \times (0.017) \]
\[\text{K} = \text{TBK} - \text{TBCa} \times (0.076) \]
\[\text{Cl} = \text{TBCl} - \text{TBCa} \times (0.0068) \]
\[\text{phosphate} = K \times 1.66 \]

Total Body Protein

The next compartment, total body protein, can now be quantified by prompt gamma neutron activation analysis [18]. Total body nitrogen is measured and then converted to protein (TBN × 6.25). Our system at Brookhaven has a precision of ± 4% and delivers a 50 mrem radiation dose per study.

Total Body Water

The third major compartment is TBW. Technically, the water space is precise (1.5%) and simple to measure using one of several different isotopes. A more difficult problem is to correct for hydrogen exchange in the case of 3H$_2$O or D$_2$O. In our studies we assume that TBW (or A) is equal to 0.95 × 3H$_2$O [19]. An adjustment is then made in TBW for density at 36°C (table 1) with the result aqueous mass (A).

4 Compartments
The combined sum of M, P, and A is equal to FFM. One approach to calculating fat is to assume that the difference between body weight and FFM presents F. This method was used by Cohn et al. [20] through measurement of TBCa (M), TBN(P), and TBW(A). One weakness of this difference method is that all unmeasured substances are lumped into the F compartment. For example, 400–500 g of unmeasured glycogen would be classified erroneously as lipid. Our alternative is to measure fat per se using either DPA or total body carbon. Only DPA will be discussed here. Our DPA system generates a soft tissue R value, a numerical expression of attenuation ratio at 44 and 100 KeV. The R value varies with composition; for example, a linear relation exists between R and the proportion of ethanol in water (fig. 3). Similarly, a highly significant correlation exists between R and the percentage fat in ground beef mixtures (fig. 3). As the DPA system already pro-

Fig. 2. Correlation between TBBM measured by DPA and TBCa measured by neutron activation analysis. TBBM=2.65 TBCa – 98.8; (r=0.95, p < 0.001); SEE=186.7 g. From [22].

Fig. 3. Rst versus % ethanol in ethanol-water phantoms or % fat in beef-lard mixtures. The following 2 correlations apply: % ethanol = -978.1 Rst +1410.7, r=0.99, p < 0.001; and % fat = -499.0 Rst +732.6, r=0.99, p < 0.001. From [22].

Table 5. Comparison of lean composition and dfm observed in the present study for pooled subjects (n = 13) to previous cadaver studies (n=3)

<table>
<thead>
<tr>
<th>M, fM</th>
<th>fMn</th>
<th>fA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.054</td>
<td>0.008</td>
<td>0.062</td>
</tr>
</tbody>
</table>

(See [2]); this report did not present breakdown of mineral into osseous and non-osseous components. The results shown represent our estimates based upon the suggestions presented in the original report. Similarly, dfM was not presented for each subject, but only for the pooled n = 3. The values for each cadaver dfm presented in the table represents our estimates based upon the above-mentioned partition of total mineral into M and Mf.
measured Db (10.38 ± 0.020 g/cc) was ± 0.6%. These results are encouraging, and we believe improvements in the model are possible.

The next step involved comparison of calculated Dffm to the 3 cadaver studies summarized in table 2. Our calculated Dffm was 1.096 g/cc, with no obvious gender or age effect in this small sample. This result is in remarkably good agreement with the 3 male cadavers, in which the mean Dffm was 1.10 g/cc. The distribution between A, P, M, and F was also similar between in vivo measurements and cadavers (table 5).

In an initial study we surveyed the body composition of over 200 white women between the ages of 20 and 90 years. A similar but abbreviated protocol to that described above was used. The women were divided into 2 groups, 1 with a low DPA bone density (< 0.9 g/cm2, n=23) and the other with a bone density above 0.9 g/cm2 (n=187). The osteopenic women tended to be older than their non-osteopenic counterparts (X ± SD, age = 52 ± 6 vs. 37+4 years). The main finding is that osteopenic women had a significantly reduced dffm (1.093 g/cc) compared to women who had a normal bone density (1.102 g/cc, P < 0.001).

We first developed a fat prediction equation by scanning 7 frozen ground beef phantoms of chemically determined fat content. The subject’s fat was then calculated from the DPA study R. We found a close correlation between DPA fat and fat measured by other conventional methods such as hydrodensitometry, TBK, TBW, and neutron activation analysis (r=0.89–0.93, all p < 0.01–0.001). We therefore used DPA fat in the following presentation, as no underlying assumptions are used in this approach that might be confounded by ethnicity, aging, gender, or obesity.

Summary
The field of human body composition research by necessity is based upon assumptions related to tissue chemical content. The 2-compartment model, which requires only 1 measurement in addition to body weight, is the cornerstone of current research in this field. Yet the assumptions upon which 2-compartment models are based were developed on a limited scale and their validity under specified conditions is questionable. Recent developments now allow quantification of previously unmeasured somatic constituents. The capacity to extend our models to 4 or more components is now at hand. Not only will this allow us to vastly expand our validation of two 2-compartment approaches, but our ability to explore new and important physiological questions is within reach.

Chemical Measurement of Body Density in vivo
The preceding review of recently developed body composition methods indicates that all four major chemical categories related to body weight are now measurable. We therefore conducted a study that had a twofold aim: to compare Db calculated from chemical composition to Db measured by hydrodensitometry and to compare calculated dffm to the previously mentioned cadaver-derived dffm.

The 13 subjects present above, 8 females and 5 males, underwent hydrodensitometry, prompt and delayed gamma neutron activation analysis, and DPA. Hydrodensitometry provided measured Db. Prompt gamma neutron activation allowed measurement of total body nitrogen, which we then converted to P. Tritium dilution and hydrogen exchange correction resulted in a value for A. DPA was used to measure M0 (adjusted TBBA) and fat. Finally M8 was calculated
as the sum of bone adjusted TBK, TBNa, TBC1, and calculated phosphate (table 4). We found the sum of A, P, M0, Mc, and F was an average of 3% less than measured body weight. Presumably the unmeasured components of lean account for the missing 3%.

Db calculated from chemical components agreed within 1% of measured Db. The correlation between calculated and measured Db was highly significant (r=0.96, p < 0.001). The absolute difference between calculated (X ± SD=1.034±0.018g/cc) and

Discussion

///(Auckland) placed practical aspects in the foreground. Which of these methods are relevant for patients, to what extent can they provide us with decisive help in the daily care of the sick? The sophisticated research methods provide basic conclusions, but are not available or permitted everywhere. The question of accuracy and precision arises in the case of simple techniques. Heymsfield (New York) indicated first of all a further problem which is of significance in the evaluation of the validity of various procedures. In examining the body composition of patients, we must be critical in testing whether the assumptions from which we are proceeding and upon which the subject is based are still valid. Many methods, for example, proceed from the assumption that the lean body mass consists of 73% water; a very questionable idea in cases of illness. Heymsfield then listed a range of various techniques; the most accurate methods are cadaver analysis and, as a direct in vivo measurement, neutron activation analysis (IVNAA). Then comes dual photon absorptiometry. On a lower level there are important techniques such as the establishing of total body water (TBW), total body potassium (TBK) and hydrodensitometry based on various assumptions related to BC. Even further down the list are simple practicable processes such as, for example, anthropometry, impedance analysis (BIA) and total body electrical conductivity (TOBEC). These do not measure a tissue space directly, but are all calibrated with one of the methods mentioned above.

8 Heymsfield, Lichtman: New Approaches to Body Composition Research: A Reexamination of Two-Compartment Model Assumptions

Burkinshaw (Leeds) was sceptical regarding the accuracy of cadaver analysis. It is a very troublesome process, the chemical analyses are difficult and the results cannot easily be generalized, as most of those examined had succumbed to severe basic illnesses, with the changes to be expected in each case.

Hill saw a limit in the significance of hydrodensitometry, on account of a lack of practicability, the basic assumption and the difficulty of taking into account the air in the lungs and intestines. Shizgal (Montreal) pointed out first of all a basic problem. With several methods, the faulty measurements are to be found in the range in which the changes which we wish to measure are also found. Next, he spoke of the choice of procedure. The type of measurement in BC depends on the point of inquiry and on the answer which is being sought. In many cases, underwater weighing is probably adequate, but under other convincing circumstances certainly not. When measuring the BC, we must bear in mind the purpose for which we need that measurement.

Burkinshaw established that the two-compartment model, as simple and as important as the division into fat mass and fat-free mass may be, is no longer sufficient to fulfil demands, and this for two reasons: firstly, the question of accuracy, and secondly, the fact that we can nowadays measure protein, water and other such things which interest us when people are ill.

Discussion summarized by D. Böhm

References

Behnke AR: Physiologic studies pertaining to deep sea diving and aviation, especially in relation to the fat content and composition of the human body. Harvey Lect 1941/42;57:198–2264.

Van Itallie TB et al: Clinical assessment of body fat content in adults: potential role of electrical impedance methods, in Roche AF (ed): Body Composition Assessments in Youth and Adults: