First Report of Genotype E of Hepatitis B Virus in an Indian Population

Jasbir Singh, Caroline Dickens, Vikas Pahal, Rajesh Kumar, Rajender Chaudhary, Anna Kramvis, Michael C. Kew

Department of Biochemistry, Kurukshetra University, and Department of Surgery, Sri Krisna Ayurvedic College, Kurukshetra, India; Hepatitis Virus Diversity Research Programme, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, and Department of Medicine, University of Cape Town, Cape Town, South Africa

Hepatitis B virus (HBV) is a noncytopathic, hepatotropic DNA virus which belongs to the family Hepadnaviridae. It remains an important cause of morbidity and mortality worldwide, especially in developing countries. HBV infection leads to a wide spectrum of liver conditions including acute self-limited infection, inactive carriers, fulminant hepatitis and chronic hepatitis, with eventual progression to cirrhosis and hepatocellular carcinoma. It is estimated that over 400 million people worldwide are infected chronically with HBV. The virus has a small-sized genome (approximately 3.2 kb long) arranged in a circular, partially double-stranded DNA molecule. The viral genome contains 4 open reading frames encoding the envelope, pre-C/C, polymerase and X proteins.

There are at least 8 genotypes of HBV, designated A–H, based on a divergence of >8% over the entire genomic sequence. There are significant differences in the worldwide distribution of these different genotypes. India falls into the intermediate endemic zone with regards to the prevalence of HBV infection. The reported HBsAg...
carrier rate in India ranges from 1 to 13%, with a national average of 4.7%. Vertical and horizontal transmission in the perinatal period and early childhood, respectively, are the major means of transmission of this infection in India [5]. There is increasing evidence that the clinical outcome, response to antiviral treatment and long-term prognosis may differ depending on the genotype of the patient [6]. An attempt has been made in this communication to study different genotype, subgenotype and serotype distribution, precore mutations and to carry out phylogenetic analysis of HBV in Haryana (North India), as there is a lack of information from this area.

The sera were obtained from 21 HBsAg-positive patients from Haryana who had not taken antiviral agents such as lamivudine or interferon. All patients were negative for HIV and the hepatitis C virus infection. The institute's ethics committee approved the study. Alanine aminotransaminase (ALT) and HBeAg were determined respectively. The extraction of DNA from serum was performed commercially available kits (Abbotts Diagnostics), respectively. The extraction of DNA from serum was performed using a QIAmp extraction kit (Qiagen, Germany). DNA extracted was eluted in 100 μl best quality water.

PCR for the amplification of the pre-S1/S2 region was done using nested PCR utilizing 230F (5'-TC-AACAATGCCAGAGTCTT-3') and 800R (5'-AACAGG-GGTATAAAGGGACT-3') primers for the first round. PCR was performed for 40 cycles involving denaturation at 94°C for 1 min, annealing at 53°C for 50 s and extension at 72°C for 50 s. The initial denaturation was at 94°C for 3 min, and final extension was performed at 72°C for 10 min. Second-round PCR was performed using P7 (5'-GTCGTT-GACTTCTTCAATTTTC-3') and P8 (5'-CGGTATAAAGGGACTCAAGAT-3') primers, as per the method of Lindh et al. [7]. Genotyping was done using the restriction enzymes HinfI and Tsp509I, again as per the method of Lindh et al. [7].

The precore region was amplified using nested PCR involving primers 1732F (5'-CGGAGATGTTGGGGA-3') and 2045R (5'-CAATGCTCAGGAGCTCTA-A1-3') for the first round. PCR was performed for 40 cycles involving denaturation at 94°C for 30 s, annealing at 62°C for 50 s and extension at 72°C for 50 s. Initial denaturation was at 94°C for 5 min and final extension was performed at 72°C for 10 min. Second-round PCR was performed using primers 1765F (5'-GGTCTTTGTAC-1764CAATGCTCAGGAGCTCTA-A1-3') and 1968R (5'-GTCAGAAGGGCA-1762AACAGC-3') for the first round and P7 and P8 primers in the second round, followed by restriction analysis using HinfI and Tsp509I for genotyping) was carried out as described previously [8].

Assays of ALT and HBeAg showed that 24% of the samples had elevated ALT levels and 90% of the samples were negative for HBeAg. The banding pattern of nested PCR (using 230F and 800R primers in the first round and P7 and P8 primers in the second round, followed by restriction analysis using HinfI and Tsp509I for genotyping) was compared with the published results of Lindh et al. [7]. Our results showed that 15/17 (90%) of the samples were of the HBV D genotype (subgenotype D1, serotype ayw), 1 sample (5%) belonged to subgenotype A1 (serotype adw) and the remaining 1 (5%) to HBV E genotype (serotype ayw4). Genotype A was found to have subgenotype A1 quite similar to the South African isolates. Results for genotyping were confirmed using phylogenetic analysis and are shown in figure 1. This is the first report of the presence of the HBV E genotype in India, as this genotype is characteristic of West Africa [8]. Our results do not support the previous finding of Thakur et al. [9] in which genotypes D and A were detected in 48 and 46% of the individuals, respectively, in the Indian subcontinent. Similar to our findings, Thippavazzula et al. [10] reported that genotype D (subgenotype D1, serotype ayw) and genotype A (subgenotype A1, serotype ayw) were prevalent in a South Indian population. Banerjee et al. [11] had reported genotype D having subgenotypes D1, D3 and D5 as well as serotypes ayw2 and ayw3 in eastern India.

Amplification and sequencing of the precore region shows 1762 A–T and 1764 G–A mutations. A 1762 A–T mutation was observed in 38% of the samples; 5% had elevated ALT levels, and 85% of the samples were negative for HBeAg. A 1764 G–A mutation was observed in 15% of the samples, and 10% had elevated ALT and were negative for HBeAg. 1762 A–T and 1764 G–A mutations were higher in negative HBeAg and equally common in different genotypes, but with high ALT as observed by Chauhan et al. [12]. 1762 A–T and 1764 G–A mutations suppress HBeAg synthesis and may contribute to hepatocarcinogenesis [13, 14]. An 1809T mutation was observed in 5% of Indian patients under study, all of whom had normal ALT and negative HBeAg. This is a missense mutation, which is found in 80% of African blacks [14] and represents the wild-type.

Therefore, this communication reports the first instance of HBV genotype E in an Indian population. The
majority of the samples have HBV D genotypes, subgenotype D1 and serotype ayw2. 1762A–T and 1764G–A as well as 1809G mutations have also been observed. Efforts to amplify and sequence the full length genotype E are ongoing.

Fig. 1. Phylogenetic analysis of S region position 375–790 from the EcoRI site on AY945307. Names of isolates sequenced in the present study are surrounded by boxes.

Acknowledgement

Jasbir Singh is thankful to the Union of International Cancer Congress for providing financial assistance to carry out this work.
References

