The Presence in Blood of Both Glycosaminoglycan and Mucosal Mast Cell Protease following Systemic Anaphylaxis in the Rat

S.J. Stephen J. King a
K. Karen Reilly b
J. Joan Dawes b
H.R.P. Hugh R.P. Miller a

aDepartment of Pathology, Moredun Research Institute, and bMRC/SNBTS Blood Components Assay Group, Edinburgh, UK

Abstract
The appearance in blood of rat mast cell protease II (RMCPII) and glycosaminoglycan (GAG) was examined in normal and Nippostrongylus brasiliensis-primed rats challenged intravenously with worm antigen. Systemic release of these two products occurred only in immune recipients of antigen; substantial levels of RMCPII were also present in the intestinal perfusates of these same rats and there was depletion of both RMCPII and mucosal mast cells (MMC) from the intestinal mucosa. Depletion of MMC was evident after staining for proteoglycan or for serine esterase and the mast cell counts with both histochemical techniques were highly correlated. Taken together, the results suggest that MMC are likely to be the principal source of secreted GAG and RMCPII.

Correspondence to: Dr. S.J. King, Department of Pathology, Moredun Research Institute, Edinburgh EH17 7JH (UK)

During the immune expulsion of the gastrointestinal nematode Nippostrongylus brasiliensis from the rat, there is discharge of granule contents of mucosal mast cells (MMC), and depletion of proteoglycan from these cells [1]. Following intravenous challenge of primed rats with N. brasiliensis worm antigen, extensive mucosal damage ensues which is accompanied by the systemic and enteric release of a specific neutral proteinase: rat mast cell protease II (RMCPII) [2] derived from MMC, and depletion of MMC from the jejunal mucosa [3]. The present study was undertaken to analyse body fluids for the presence of MMC-derived proteoglycan during systemic anaphylaxis in the rat.

15 female outbred Wistar rats, immunised 3 and 8 weeks earlier by subcutaneous injection with 6,000 N. brasiliensis larvae [4], were allocated randomly to 3 groups of 4 rats and 1 group of 3 rats and were challenged intravenously with 1,000, 500 or 250 worm equivalents (w.e.) of adult whole worm antigen or saline. Worm antigen was prepared as described previously [5]. A further group of 4 naive rats was challenged with 500 w.e. intravenously. 1 h after intravenous challenge, animals were anaesthetised with ether and bled out. Blood was collected into the anticoagulant ‘Thrombotect’ (Abbott) and the plasma was separated by centrifugation and stored at -70 °C. Serum, small intestinal perfusates and samples of jejenum were collected and the concentrations of RMCPII in these samples were measured by radial immunodiffusion [2, 3]. Additionally, adjacent segments of jejunum were placed in either Carnoy’s fluid or 4% para-formaldehyde prepared with phosphate-buffered saline. Tissues were embedded in wax and sections were stained with either Toluidine blue [6] or with naphthol AS-D chloroacetate to demonstrate serine proteases.
esterases [7]. Plasma, gut perfusates and gut homogenates were analysed for the presence of glycosaminoglycan (GAG) by a modification of the competitive heparin binding assay previously described [8], in which poly-brene-Sepharose was substituted for protamine-Sepharose as the binding reagent and the radioactive tracer and standard were heparan sulphate rather than heparin.

RMCPII was present only in the sera of immune rats challenged with worm antigen (fig. 1) and in these same rats there was a 10-fold increase in the concentration of GAG in plasma when compared with immune recipients of saline or naive rats given antigen (fig. 1). Although the release of RMCPII and GAG into the blood was, in this experiment, independent of the dose of antigen, there was a highly significant correlation between the concentrations of RMCPII and GAG \((y = 2,110 + 17 x, r = 0.93, p < 0.001; \text{fig. 2})\),

Systemic Anaphylaxis in the Rat

![Fig. 1. a Total recoveries of RMCPII (mean ± SEM) in intestinal perfusates (•) and concentration of enzyme in jejunal mucosa (µg/g wet weight tissue, ■) of immune rats given worm antigen or saline (dose = 0). The number of mucosal mast cells (MMC) per villus-crypt unit (VCU) detected with Toluidine blue (mean ± SEM, O) are also shown. Individual symbols showing the concentrations of RMCPII in perfusates (♦) and gut homogenates (¤) and the number of MMC (O) in naive rats challenged with 500 w.e. of antigen are also plotted, b The concentrations of RMCPII in serum (mean ± SEM •) and glycosaminoglycan (GAG) in plasma (mean ± SEM ■) are plotted against the dose of worm antigen. Values from immune rats injected with saline are plotted at the zero dose and in naive rats given antigen the values are plotted at 500 w.e. for RMCPII (O) and for GAG (¤).](image)

![Fig. 2. Regression analysis of the concentrations of RMCPII in serum against GAG in plasma (y = 2,110+17 x, r = 0.93, p < 0.001). Plasma was not obtained from one rat given 500 w.e.](image)
Fig. 3. Regression analysis demonstrating a highly significant correlation between the numbers of MMC enumerated after staining with Toluidine blue and with naphthol AS-D chloroacetate (y = -2.3 + 1.1 x, r = 0.98, p < 0.001).

which would suggest that they may have been released from the same source.

Intestinal perfusates from primed, challenged rats contained 1,144–2,085 µg RMCPII (fig. 1), whereas perfusates from controls were devoid of this enzyme (fig. 1). There was a concomitant, highly significant (p < 0.001) depletion of RMCPII and MMC from the mucosa of primed, challenged rats when compared with control values (fig. 1). Analysis of gut perfusates and homogenates showed GAG to be present within each sample. No decrease from jejunum or increase within the perfusate was detected. The analysis of these tissues is, however, likely to be complicated by endogenous GAG other than that contained in the mast cells.

Mast cell depletion from the mucosa was detected both with Toluidine blue (pH 0.5) and with naphthol AS-D chloroacetate; the correlation between the numbers of mast cells detected with these two methods was highly significant (y = -2.3 + 1.1 x, r = 0.98, p < 0.001; fig. 3), suggesting that proteoglycan and serine ester-ases were depleted concomitantly from discharging MMC.

The results of this study are consistent with data from previous experiments [2] except that shock was severe with the lowest dose of worm antigen and was not augmented by further increasing the challenge dose. There was, as previously described [2], substantial secretion of RMCPII into the gut lumen and a concomitant fall in the mucosal concentration of this enzyme. These changes were paralleled by a reduction in the number of MMC detected with either Toluidine blue or naphthol AS-D chloroacetate. Whilst we were unable to detect changes in mucosal levels of GAG, probably for technical reasons associated with a high background of tissue GAG, there was a tenfold increase in the concentration of GAG in plasma which was highly correlated with the release, into serum, of RMCPII. Although the distribution of RMCPII in tissues other than the gut have not yet been published, our own studies have shown that, apart from the lung in which RMCPII is increased after infection with N. brasilienis and which, at most, contains 300 µg RMCPII/g wet weight, most other organs contain little or none of this enzyme [9]. Clearly, therefore, the major source of secreted RMCPII is the enteric mucosa, and it would seem likely that GAG present in plasma is also released from this site with MMC being the most obvious source of these two products.

More conclusive evidence of the mucosal mast cell as the source of secreted GAG must await further analysis. However, it is relevant to note that MMC granule proteoglycan is, like that from the murine mast cell cultured from bone marrow [10], non-heparin proteoglycan [11], and that the latter cell releases chondroitin sulphate E in response to immunological stimuli [12]. By contrast the heparin present in rat peritoneal mast cells remains within the granule matrix, apparently complexed with the insoluble chymase (RMCPI) [13]. If, as the present study suggests, granule products of MMC are highly soluble, this is yet another example of the biochemical and functional differences between MMC and connective tissue mast cells.

Acknowledgements
S.J.K. thanks the Agricultural and Food Research Council for financial support and K.R. is indebted to the Scottish Home and Health Department (grant No. K/MRS/50/660). Funding was also provided by the Medical Research Council (grant No. PG8218470).

References

