Genome Dynamics
Vol. 6

Series Editor
Jean-Nicolas Volff Lyon

Executive Editor
Michael Schmid Würzburg

Advisory Board
John F.Y. Brookfield Nottingham
Jürgen Brosius Münster
Pierre Capy Gif-sur-Yvette
Brian Charlesworth Edinburgh
Bernard Decaris Vandoeuvre-lès-Nancy
Evan Eichler Seattle, WA
John McDonald Atlanta, GA
Axel Meyer Konstanz
Manfred Schartl Würzburg
Microbial Pathogenomics

Volume Editors

Hilde de Reuse Paris
Stefan Bereswill Berlin

39 figures, 30 in color, and 12 tables, 2009
Contents

VII Editorial
Volf, J.-N. (Lyon)

IX Preface
de Reuse, H. (Paris); Bereswill, S. (Berlin)

1 Genome Comparison of Bacterial Pathogens
Wassenaar, T.M. (Lyngby/Zotzenheim); Bohlin, J. (Oslo); Binnewies, T.T. (Lyngby/Rotkreuz); Ussery, D.W. (Lyngby)

21 In silico Reconstruction of the Metabolic and Pathogenic Potential of Bacterial Genomes Using Subsystems
McNeil, L.K. (Urbana, Ill.); Aziz, R.K. (Cairo)

35 The Bacterial Pan-Genome and Reverse Vaccinology
Tettelin, H. (Baltimore, Md.)

48 ‘Guilty by Association’ – Protein-Protein Interactions (PPIs) in Bacterial Pathogens
Schauer, K. (Paris); Stingl, K. (Münster)

62 Helicobacter pylori Sequences Reflect Past Human Migrations
Moodley, Y.; Linz, B. (Berlin)

75 Helicobacter pylori Genome Plasticity
Baltrus, D.A. (Chapel Hill, N.C.); Blaser, M.J. (New York, N.Y.); Guillemin, K. (Eugene, Oreg.)

91 Genomics of Thermophilic Campylobacter Species
Gaskin, D.J.H.; Reuter, M.; Shearer, N.; Mulholland, F.; Pearson, B.M.; van Vliet, A.H.M. (Norwich)

110 Adaptation of Pathogenic E. coli to Various Niches: Genome Flexibility is the Key
Brzuszkiewicz, E. (Göttingen/Berlin); Gottschalk, G. (Göttingen); Ron, E. (Ramat Aviv); Hacker, J. (Berlin/Würzburg); Dobrindt, U. (Würzburg)
126 Role of Horizontal Gene Transfer in the Evolution of *Pseudomonas aeruginosa* Virulence
Qiu, X.; Kulasekara, B.R.; Lory, S. (Boston, Mass.)

140 The Genus *Burkholderia*: Analysis of 56 Genomic Sequences
Ussery, D.W.; Kiil, K. (Lyngby); Lagesen, K. (Oslo); Sicheritz-Pontén, T. (Lyngby); Bohlin, J. (Oslo); Wassenaar, T.M. (Lyngby/Zotzenheim)

158 Genomics of Host-Restricted Pathogens of the Genus *Bartonella*
Engel, P.; Dehio, C. (Basel)

170 *Legionella pneumophila* – Host Interactions: Insights Gained from Comparative Genomics and Cell Biology
Lomma, M.; Gomez Valero, L.; Rusniok, C.; Buchrieser, C. (Paris)

187 A Proteomics View of Virulence Factors of *Staphylococcus aureus*
Engelmann, S.; Hecker, M. (Greifswald)

198 Pathogenomics of Mycobacteria
Gutierrez, M.C. (Paris); Supply, P. (Lille); Brosch, R. (Paris)

211 Author Index

212 Subject Index
The book series ‘Genome Dynamics’ aims to provide readers with an up-to-date overview on genome structure and diversity. Such knowledge is of particular interest for human health, as already demonstrated in the first volume of the series entitled ‘Genome and Disease’. In this volume, we discussed the different mechanisms of genetic instability affecting our genes and leading to human disease. Importantly, genome analysis can also tell us how human pathogens impair health, how we interact with them and fight against their harmful effects. More than a decade after the publication of the genome sequence of *Haemophilus influenzae* and just before entering into a new era of genome analysis opened by the ‘next generation’ sequencing technologies, it is time to review our current knowledge of pathogen genomics and its contribution to the understanding and treatment of infectious diseases. Therefore, we have invited two reputed microbiologists, Hilde de Reuse (Institut Pasteur, Paris) and Stefan Bereswill (Charité University Medicine Berlin), to provide us with their view on the current status, medical impact and future developments of ‘Microbial Pathogenomics’. As you will see, the result is very impressive. Many thanks to both guest editors for this very informative volume on key aspects and novel trends in this major field of research.

Jean-Nicolas Volff
Lyon, February 2009
Preface

The rapid and ongoing process of functional and comparative genome analysis has revealed novel aspects of microbial biology and evolution, as well as of pathogenicity. In this book on ‘Pathogenomics’, we focus on the genomics aspects of pathogenic bacteria because of their importance and their unique host-adaptation strategies.

Genomes from each important human bacterial pathogen have now been sequenced. For many of them multiple sequences of different strains and of closely related species (non-pathogenic or animals pathogens) are available. Population genomics of pathogenic bacteria have metamorphosed epidemiology and provided astonishing information on the mechanisms related to bacterial persistence or host adaptation. In addition, ‘Pathogenomics’ has also shed new light on the forces that shape the evolutionary history of bacterial pathogenesis and virulence acquisition in some cases through co-evolution with the host. Even more spectacular, bacterial genome information was used successfully to retrace the ancient human population migrations, as is illustrated in this book by the gastric pathogen Helicobacter pylori.

More generally, multiple genomic sequences provide insights into the evolutionary processes that have shaped bacterial genomes and generated their diversity. Analysis of genome plasticity and the bacterial gene pools have led to new concepts such as the core genome (genes in common to all sequenced strains) and the pan-genome (the sum of the core and of dispensable genomes shared by all sequenced strains). The overwhelming quantity of information couldn’t have resulted in answers to biologically relevant questions without a concomitant revolution in the development of bioinformatics approaches and high throughput experimental technologies (functional genomics).

This book intends to summarize these different aspects and novel trends in bacterial pathogenomics by presenting a unique collection of reviews written by leading
researchers in the field. The contributions were peer-reviewed by a panel of international experts.

The current technologies including computational tools and functional approaches for genome analysis are presented in illustrated chapters. This includes visualization tools for genome comparison, databases, in silico metabolic reconstructions and function prediction, as well as interactomics for the study of protein-protein interactions. Contributions dealing with pan-genomics and reverse vaccinology introduce the reader to the actual strategies used by genomics researchers to face the problems generated by bacterial diversity in the prevention and treatment of infectious diseases.

Taking individual bacterial pathogens as examples, the authors discuss the evolutionary forces that accompany human–pathogen interactions in the light of bacterial ecology. Most important frameworks of host-adaptation are illustrated by *Helicobacter pylori* and *Mycobacterium tuberculosis* that are human-specific and highly persistent.

Other chapters outline how bacterial pathogens have evolved through several mechanisms with one major role for horizontal gene transfer. Bacteria with different pathogenic strategies have been shaped. Some, like *Escherichia coli* have acquired the capacity to rapidly adapt to changing environments in order to enhance the spectrum of sites within the host that can be infected. For *Pseudomonas aeruginosa*, the strategies allow versatility for the occupation of a wide range of different environmental niches in addition to the human host. Others, like *Legionella* manipulate and subvert host mechanisms by synthesizing eukaryotic-like proteins that mimic specific cellular functions. Most fascinating are the signatures or possibility to deduce the life style of a bacterium as illustrated by a host-restricted organism such as *Bartonella* or by the versatile *Pseudomonas*. In the case of other pathogens such as *Helicobacter pylori* or *Campylobacter*, genome evolution through loss, gain and mutation of genes is also discussed.

In conclusion, the unique combination of topics dealing with technology, pathogenesis and evolution provides the reader with a global view of current and future trends in bacterial genomics. Teachers and lecturers will make use of the illustrative presentation to optimize knowledge transfer and learning strategies.

Hilde de Reuse, Paris
Stefan Bereswill, Berlin
February 2009