Interactive Role of Protein Phosphatase 2A and Protein Kinase Cα in the Stretch-Induced Triphosphorylation of Myosin Light Chain in Canine Cerebral Artery

Kazuo Obara a Ayako Mitate a Kayo Nozawa a Makiko Watanabe a
Yoshihiko Ito a Koichi Nakayama b

a Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, and b Department of Molecular and Cellular Pharmacology, Faculty of Pharmaceutical Sciences, Iwate Medical University, Yahaba, Japan

Key Words
Cerebral artery · CPI-17 · Mechanical stretch · Myosin phosphorylation · Okadaic acid · Protein kinase C · Protein phosphatase 2A · Rho kinase

Abstract
The interactive role of protein kinase C (PKC) isoforms and protein phosphatase 2A (PP2A) in the mechanisms underlying the gradual reduction in stretch-induced contraction through triphosphorylation of 20-kDa myosin light chain (MLC 20) was investigated in the canine basilar artery. In the presence of 5 mM tetraethylammonium, stretching at a rate of 1 mm/s from the initial length (L i) to 1.5 L i produced a contraction. Maintaining the stretched state for 15 min (15-min stretch) produced triphosphorylation of MLC 20 at Ser-19, Thr-18 and Thr-9, and a gradual reduction in the contraction, both of which were reversed by Gö6976 (1 μM), an inhibitor of conventional PKC. The 15-min stretch increased PKCα activity whereas it decreased PP2A activity, both of which were blocked by Y-27632, an inhibitor of rho kinase. Okadaic acid (OA; 1 μM), a PP2A inhibitor, also produced triphosphorylation of MLC 20 at the same amino acid residues and activated PKCα, which was inhibited by Gö6976. Stretching and OA increased phosphorylation of 17-kDa PKC-potentiated inhibitory phosphoprotein (CPI-17), and this phosphorylation was inhibited by Gö6976. The present results suggest that activation of PKCα mediated by an inhibitor of PP2A is involved in the stretch-induced triphosphorylation of MLC 20, and that this triphosphorylation counteracts the stretch-induced contraction.

Introduction
Mechanical stretching of the vascular wall acts as a facilitating stimulus on blood vessels, and elicits a variety of cellular responses, including myogenic contraction and relaxation. This myogenic response contributes to the autoregulation of blood flow, and is also considered to be one of the primary mechanisms responsible for basal vascular tone [1–5]. We previously reported that the cerebral artery of various animal species including dogs [6–8], rabbits [2, 9] and rats [10, 11] was particularly sensitive to mechanical stretching and pressure, leading to a contraction. We found that slow stretching produces contraction only when the large conductance Ca 2+-activated...
K⁺ channels (BK channels) of the artery are inhibited by iberiotoxin and tetraethylammonium (TEA) [7] or by 20-hydroxyeicosatetraenoic acid (20-HETE) [12], an endogenous cytochrome P450 metabolite of arachidonic acid. More recently, it has been reported that the inhibition of BK channels under pathophysiological conditions, such as intracellular acidosis [13] and type 1 diabetes [14], results in increased vasoconstriction of cerebral artery. Therefore, a change in BK channel activity may occur under physiologic and pathologic conditions.

We recently reported that slow stretching gradually increased the levels of triphosphorylated 20-kDa myosin light chain (MLC₂₀), and that the triphosphorylated MLC₂₀ in contrast counteracted stretch-induced contraction in the canine cerebral artery treated with TEA. As to the mechanism of MLC₂₀ triphosphorylation, we suggested that myosin-light-chain kinase (MLCK), protein kinase C (PKC), and rho kinase play important roles in this triphosphorylation [8]. However, the interactive roles of these kinases in the sequence of events involved in the mechanotransduction of vascular tissue still remain to be elucidated.

We previously reported that okadaic acid (OA), a black sponge toxin and a cell-permeable inhibitor of protein phosphatase 2A (PP2A) [15], at a relatively low concentration (less than 3 μM), produced a relaxing effect on canine cerebral and porcine coronary arteries precontracted with a high concentration of KCl [16]. Furthermore, our recent study indicated that this relaxing action on the canine cerebral artery produced by OA was concomitant with triphosphorylation of MLC₂₀ [17]. It has been reported that PKCβ activity is regulated by phosphorylation of 3 conserved residues in its kinase domain [18]. Furthermore, our previous findings clearly indicate that of the 4 PKC isoforms (PKCa, δ, ζ, and η) present in the canine basilar artery [19], PKCa and PKCG are translocated from the cytosol to the membrane fraction by slow stretching [20]. It has been reported that both a physical and a functional interaction between PP2A and PKCα occurs in the mast cells [21]. Based on these observations and circumstantial evidence, we hypothesize that an intimate interaction between PP2A and PKCα may be involved in the mechanism for stretch-induced triphosphorylation of MLC₂₀.

The present study was thus aimed at further clarifying the mechanisms underlying the reduction in the stretch-induced contraction in the TEA-treated canine cerebral artery. For this purpose, we used OA as a pharmacological probe to specifically inhibit PP2A. Our results suggest that PKCα mediated by PP2A inhibition is involved in stretch-induced triphosphorylation of MLC₂₀. Inhibition of basal activity of PP2A by stretching seems to be implicated in this stretch-induced triphosphorylation of MLC₂₀ and the concomitant reduction in stretch-induced contraction.

Materials and Methods

All experiments were carried out in accordance with the Institutional Guidelines for Animal Experiments of the University of Shizuoka, and the Guiding Principle of the Care and Use of Laboratory Animals approved by the Japanese Pharmacological Society.

Isolation of Basilar Artery

Healthy mongrel dogs of either sex weighing 7–15 kg were anesthetized with pentobarbital sodium (30 mg/kg, i.v.) and exsanguinated by bleeding from the carotid arteries. A cylindrical segment of the basilar artery, 2 cm long, was isolated and cut into ring segments about 0.5 mm in width. The preparation was horizontally mounted in an organ bath containing 5 ml of Tyrode’s solution of the following composition: 158.3 mM NaCl, 4 mM KCl, 2 mM CaCl₂, 1.05 mM MgCl₂, 10 mM NaHCO₃, 0.42 mM NaH₂PO₄, and 5.6 mM glucose, and bubbled with 97% O₂ and 3% CO₂ (pH 7.35 at 35°C).

Mechanical Stimulation and Recording of Isometric Contraction

The experimental method for stretching ring segments of the canine cerebral artery has previously been described in detail [7]. Briefly, the endothelium was eliminated by gentle rubbing of the intimal layer of the artery with a moist cotton pledget. For the mechanical stimulation, a ring segment of the artery was mounted between two tungsten wires connected with a force transducer and an arm whose position was controlled by a mechanical stimulator (DPS-265; Dia Medical System Co., Tokyo, Japan), and the distance between the tungsten wires with the ring segments was controlled. The distance was adjusted to half of the initial length (Lᵢ) of the ring segment, at which no measurable increase in passive tension was observed. Lᵢ is the circumference of the ring segment assuming the segment to be cylindrical in shape [22]. In order to verify the responsiveness of the artery segments, an 80 mM KCl-induced contraction was produced at the beginning of each experiment. Isotonic 80 mM KCl-Tyrode’s solution was prepared by replacement of NaCl with an equimolar amount of KCl. We previously reported that a slow stretch at a rate of 1 mm/s from Lᵢ to 1.5 Lᵢ elicited a reproducible contraction when the artery was treated with TEA (5 mM) or iberiotoxin (100 nM) [7]. The slow stretch-induced contraction reached a maximum at almost 1 min after stretching and then gradually decreased to near basal level within 15 min. Therefore, in this study, the ring segments were stretched from Lᵢ to 1.5 Lᵢ at a rate of 1 mm/s and then kept in the stretched state for 15 min in the presence of TEA (5 mM). The active tension produced by the slow stretching was defined as the difference in amplitude between the tension in the absence of papaverine and that in the presence of 100 μM papaverine (passive tension) (fig. 1a) as previously described [7]. To investigate the in-

Downloaded by: 54.70.40.11 - 11/18/2017 9:43:13 PM
terplay between PKC isoforms and PP2A in MLC20 phosphorylation and contraction after the 15-min stretch, ring segments were treated with or without Gö6976 (1 μM) or papaverine (PPV, 100 μM) for 15 min. Then they were stretched at a rate of 1 mm/s from L1 to 1.5 L1 and maintained in the stretched state for 15 min (ST) in the presence of TEA (5 mM). b Typical phosphorylation patterns of MLC20 detected by the immunoblot technique. The segments were incubated in a solution containing vehicle (ST; 0.1% DMSO) or Gö6976 (ST + Gö; 1 μM) for 15 min, and then were stretched for 15 min. In a separate series of experiments, the segments were pre-treated with vehicle (OA; 0.1% DMSO) or Gö6976 (OA + Gö; 1 μM) for 15 min before application of OA (1 μM). Nontreated segments (control), and ST- or OA-treated segments were frozen in an acetone-dry ice. Note that four immunoreactive bands to anti-MLC20 (MLC, MLC-p, MLC-pp and MLC-ppp corresponding to non-, mono-, di-, and tri-phosphorylated MLC20, respectively) were detected. c Summarized results are depicted. The ordinate indicates the percent area for a given band calculated as described previously [8]. Data are means ± SEM of 5 experiments using 5 artery rings obtained from 5 different dogs. a p < 0.01 compared with before stretch and b p < 0.01 compared with vehicle after stretch.

Measurement of MLC20 Phosphorylation

The level of MLC20 phosphorylation was quantified by the method described previously [8]. Ring segments were frozen in 10% trichloroacetic acid (TCA)-90% acetone cooled on dry ice before and after the 15-min stretch. The frozen segments were stored in the same solution for 20–30 min, and then immersed in acetone for 24 h to remove the TCA. The segments were then smashed in liquid nitrogen and sonicated in 100 μl of an extracting solution containing 10 M urea, 2 mM ethylenediaminetetraacetic acid (EDTA), 5 mM dithiothreitol, 0.01% bromophenol blue, and 20 mM Tris-HCl (pH 7.5). Samples were subjected to isoelectric focusing (IEF)-polyacrylamide gel electrophoresis (PAGE) using pH 4–6 ampholyte, transferred to nitrocellulose
membranes, and blotted with MLC20-specific mouse antibodies. The extent of MLC20 phosphorylation was quantified from densitometric scans of immunostained nitrocellulose blots.

Two-Dimensional Phosphopeptide Mapping

Two-dimensional tryptic phosphopeptide mapping was carried out based on the method described by Erdodi et al. [23]. MLC20 was purified from the canine basilar artery and phosphorylated in vitro using the method described by Hathaway and Haeberle [24]. In order to perform the mappings, a total of 20 artery rings were isolated from 5 dogs, and subjected to each procedure as depicted in figure 2a–g. At least 3 mappings were carried out for each procedure. The ring segments were preincubated with 32Porthophosphate (1.2 mCi/ml) for 60 min in Tyrode's solution that did not contain Na$_2$HPO$_4$ and were stretched for 15 min. IEF gel electrophoresis was performed with extracts from stretched arteries. Following staining with Coomassie blue, MLC20 was eluted from gels and digested at 37°C by 5 repeated additions of 5 μl of 1 μg/ml N-p-tosyl-L-phenylalanine chloromethyl ketone-treated trypsin at 45-min intervals; the digestion was continued...
for a total of 6 h. Gel pieces up to 20, depending on the radioactivity incorporated into the proteins of the individual bands, were pooled before elution. The samples were subjected to electrophoresis performed in acetic acid/formic acid/water (150:50:80 vol/vol) at pH 1.9 at 300 V for 90 min on a cellulose sheet (first dimension), followed by ascending chromatography (second dimension) in butanol/pyridine/acetic acid/water (15:10:3:12 vol/vol) for 3 h. After drying of the cellulose sheet, phosphopeptides on the sheet were subjected to autoradiography.

Measurement of Enzyme Activity of PKCα

The activity of PKCα was assayed as follows: translocation of PKCα from the cytosol to the membrane fraction was measured by immunoblot analysis as described previously [25]. Briefly, canine basilar artery rings were homogenized with a Polytron in ice-cold homogenization buffer composed of 50 mM Tris-HCl, 5 mM EDTA, 10 mM EGTA, 1 mM phenylmethylsulfonyl fluoride, 5 mM dithiothreitol, 10 mM benzamide, 25 μg/ml leupeptin, and 250 mM sucrose, and then centrifuged at 100,000 g for 30 min at 4°C. 'Cytosol' and 'crude membrane' fractions were derived from the supernatant and the pellet, respectively. PKC isoforms in each fraction were separated by sodium dodecylsulfate-PAGE (SDS-PAGE) on 10% acrylamide gels, transferred to nitrocellulose membranes, and blotted with anti-PKCα antibody.

Phosphorylation of PKCα at Ser-657, another measure of the enzyme activity [18], was also checked. The cytosol fractions were subjected to SDS-PAGE, transferred to nitrocellulose membranes, and blotted with anti-PKCα or anti-phospho-PKCα antibodies. Immunoblot analysis was performed to detect each protein molecule by the standard procedures as described previously [25] unless otherwise stated in the text.

The activity of PKCα was measured with a nonradioactive protein kinase assay kit (TruLight™ PKCα Assay Kit; Calbiochem) according to the manufacturer’s protocol. The cytosol fraction (50 μl) was mixed with 50 μl of the reaction solution containing 1 μM PKCα substrate (RFARKGLRQKNV) and 2 μM ATP, and incubated for 1 h at room temperature. After addition of the microsphere, a kit component (No. KP31689), which is coated with highly fluorescent polymers and binds to the phosphorylated PKCα substrate, resulting in the change of fluorescence, the fluorescence intensity was measured at an excitation wavelength of 450 nm and an emission wavelength of 490 nm.

Measurement of PP2A Activity

PP2A activity was measured with a Ser/Thr phosphatase assay kit (Upstate Biotechnology) using the method described by Yu et al. [26]. Canine basilar artery rings before and after the 15-min stretch were quick-frozen in liquid nitrogen and lysed for 30 min on ice in lysis buffer (137 mM NaCl, 1 mM CaCl2, 1% Nonidet P-40, 10% glycerol, 20 mM Tris-HCl, pH 8.0, 1 mM sodium vanadate, 50 mM NaF, 1 mM phenylmethylsulfonyl fluoride, 20 μg/ml leupeptin, and 20 μg/ml aprotinin). Lysates were centrifuged at 20,000 g for 15 min at 4°C, and the supernatants were incubated with 2.5 μg of anti-PP2A antibody for 2 h and with protein A/G agarose beads for a further hour at 4°C. The immunoprecipitates were washed twice with lysis buffer, washed once with 50 mM Tris buffer (50 mM Tris-HCl, pH 7.0; 0.1 mM CaCl2), resuspended in assay buffer (50 mM Tris-HCl, pH 7.0, 0.1 mM CaCl2, 2.5 mM NiCl2, and 1 mg/ml p-nitrophenyl phosphate), and incubated at 37°C for 30 min. The reaction was stopped by the addition of 13% K2HPO4, and the absorbance was read at 405 nm. Protein complexes bound to beads were solubilized in SDS-PAGE sample buffer, and the amount of PP2A was quantified by immunoblot analysis with anti-PP2A antibody.

Determination of Association between PKCα and PP2A

Canine basilar artery rings before and after the 15-min stretch were lysed in 1 ml of ice-cold RIPA (Radio Immunoprecipitation Assay) buffer composed of 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 50 mM Na2HPO4, 0.25% sodium deoxycholate (w/v), 0.1% Nonidet P-40, 1 mM Na3VO4, 1 mM NaF, 1 mM phenylmethylsulfonyl fluoride, 1 μg/ml aprotinin, 1 μg/ml leupeptin, 1 μg/ml pepstatin, 5 mM EDTA and 5 mM EGTA. At least 1 μg of primary antibody [anti-PKCα or anti-PP2A catalytic subunit (PP2Ac) antibodies] was added to 1 ml of clarified lysate, and the sample was incubated for 1 h at 4°C with mixing. Immunoreactive proteins and protein complexes were then precipitated with the addition of 20 μl of protein A/G agarose beads and incubated at 4°C overnight with mixing. The beads were pelleted by centrifugation at 1,200 g for 5 min at 4°C, and the supernatant was discarded. The pellet was washed 4 times with ice-cold PBS (NaCl concentration adjusted to 1.0 M) before the addition of 40 μl of 3× SDS-PAGE sample buffer and storage at -20°C until further SDS-PAGE and Western blot analysis with anti-PKCα or anti-PP2Ac antibodies.

Measurement of CPI-17 Phosphorylation

Phosphorylation of 17-kDa PKC-potentiating inhibitory phosphoprotein (CPI-17) was measured by immunoblot analysis using anti-phospho-CPI-17 (Thr-38) antibody. Canine basilar artery rings before and after the 15-min stretch were quick-frozen in liquid nitrogen and homogenized with a Polytron in ice-cold homogenization buffer composed of 50 mM Tris-HCl, 5 mM EDTA, 10 mM EGTA, 1 mM phenylmethylsulfonyl fluoride, 10 mM dithiothreitol, 10 mM benzamide, 25 μg/ml leupeptin, and 250 mM sucrose. Homogenates were subjected to immunoblotting. The band intensity of phosphorylated CPI-17 on the X-ray film was quantified by use of a densitometer and analyzing software (NIH Image version 1.62).

Drugs

Anti-MLC20 and anti-PKCα isomform antibodies were obtained from Sigma (St. Louis, Mo., USA). OA was purchased from Wako (Osaka, Japan). G6976 [12-(2-cyanoethyl)-6,7,12-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)-pyrrolo(3,4-c)-carbazole], Y-27632 [(R)-(+) - trans-N-(2-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide], and TruLight™ PKCα Assay Kit were obtained from Calbiochem (Darmstadt, Germany). Anti-CPI-17, anti-phospho-CPI-17 (Thr-38), anti-PP2A (clone 1D6), anti-PP2Ac, and anti-phospho-PKCα (Ser-657) antibodies, Ser/Thr phosphatase Assay Kit, myosin light chain kinase (active), and PKCα (active) were obtained from Upstate Biotechnology (Lake Placid, N.Y., USA). Protein A/G agarose beads were purchased from Santa Cruz Biotechnology (Santa Cruz, Calif., USA). G6976 and OA were stocked in 10 mM solution in 100% dimethylsulfoxide (DMSO) and were diluted over 100 times into the bath solution, the final concentration of DMSO being kept under 1%. We confirmed that 1% DMSO had no apparent effect on any of the stretch-induced contractions. All other drugs used in the present study were reagent grade.

Phosphatase 2A, PKCα and MLC20

Triphosphorylation

J Vasc Res 2010;47:115–127

119
Statistical Analysis

Data were expressed as means ± SEM. Statistical analyses were made by paired or unpaired Student’s t tests, or by Fisher’s protected least significant difference test after analysis of variance (ANOVA). A p value less than 0.05 was considered statistically significant.

Results

Slow-Stretch-Induced MLC20 Phosphorylation and Contraction

Figure 1a shows typical tracings of developed tension in response to slow stretching before and after treatment with Gö6976, an inhibitor of conventional PKC, which was superimposed on the passive tension after treatment with papaverine. The slow stretching at a rate of 1 mm/s to 1.5 times L0 produced a delayed contraction of the canine basilar artery in ring form pretreated with TEA (5 mM), which reached a maximum (active tension: 6.3 ± 1.1 mN, n = 5) at 1–2 min after the application of stretching (fig. 1a), as has been reported previously [7, 8]. The developed tension then gradually decreased, but it remained slightly higher than its initial level. Although Gö6976 (1 μM) had no apparent effect on the maximum tension induced by slow stretching, it slowed the gradual reduction in tension at 15 min after stretching (active tension, control: 0.6 ± 0.1 mN; after Gö6976: 2.9 ± 0.3 mN, n = 5, p < 0.01).

Furthermore, we confirmed our previous findings that the phosphorylation patterns of MLC20 seen during the 15-min interval were very different from those of the 1-min interval and those of 80 mM KCl [8]. In the artery segments stretched for 15 min, the typical IEF-PAGE detected multiple bands indicating non-, mono-, di-, and triphosphorylated MLC20 (fig. 1b). Summarized data shown in figure 1c indicate that Gö6976 (1 μM) decreased di- and triphosphorylated MLC20. Low concentrations of OA (1 μM), an inhibitor of PP2A, also increased mono-, di-, and triphosphorylated MLC20, and these increases were inhibited by Gö6976 (1 μM) (fig. 1b, c). Rottlerin (5 μM), an inhibitor of PKC8, had no apparent effect on MLC20 phosphorylation and contraction induced by stretching (data not shown), indicating no primary role of PKC8 in the MLC20 triphosphorylation.

The sites of phosphorylation of MLC20 were identified by two-dimensional phosphopeptide maps. Figure 2a–g shows each representative autoradiographic map obtained from at least 3 mappings for each procedure. When the purified MLC20 from the canine basilar artery was phosphorylated by MLCK, 2 radioactive spots (a and b) were observed (fig. 2a). When the same purified MLC20 was phosphorylated by PKCα, another 2 radioactive spots (c and d) were observed (fig. 2b). Maps of the canine basilar artery MLC20 phosphorylated by MLCK and PKCα revealed patterns similar to those for gizzard MLC20 reported by Ikebe et al. [27] and by Singer et al. [28], respectively. Our observations indicate that spots a and b correspond to peptides containing Ser-19 and Thr-18, respectively, which were phosphorylated by MLCK, and that spots c and d correspond to peptides containing Thr-9 and Ser-1/2, respectively, which were phosphorylated by PKC. The digests from the nonstimulated ring segments contained 1 phosphopeptide (spot a) (fig. 2c, control). When the ring segments were stretched for 15 min, 3 phosphopeptides (spots a–c) were observed (fig. 2d). Treatment with Gö6976 (1 μM) for 15 min before stretching resulted in the disappearance of spot c (fig. 2e). Our preliminary studies indicated 1 peptide (spot a) and 2 peptides (spots a and b) were present in the maps of the ring segments stretched for 1 and 5 min, respectively (data not shown). The digests from the ring segments treated with OA (1 μM) for 15 min also contained 3 phosphopeptides (spots a–c) (fig. 2f). Of these, 2 spots (b and c) disappeared by treatment with Gö6976 (1 μM) for 15 min before application of OA (fig. 2g).

These results indicate that PKCα may play a dominant role in OA-induced MLC20 triphosphorylation, while it may partially participate in the stretch-induced MLC20 triphosphorylation.

Effects of Stretching and OA on Activation of PKCα

Figure 3a shows the effects of stretching and OA on the translocation of PKCα from the cytosol to the membrane fraction, which is a measure of PKCα activation. In the resting state (control), PKCα was abundant in the cytosol (66.3 ± 3.8%, n = 5). We have previously reported that PKCα transiently translocates about 1 min after stretching [20], but its translocation ceases after a few minutes. Consistently, we noticed here no apparent translocation of PKCα at 15 min after the stretch (fig. 3a). OA (1 μM) had no apparent effect on the translocation of PKCα at either 1 (data not shown) or 15 min (fig. 3a) after treatment.

The phosphorylation of PKCα at Ser-657 causes accumulation of active enzyme [18]. To clarify why PKCα plays a dominant role in the triphosphorylation of MLC20 without any sustained translocation from the cytosol to the membrane fraction at 15-min stretch, we examined the effects of stretching and OA on the phosphorylation of PKCα at Ser-657 in the cytosol (fig. 3b). The phosphor-
Phosphatase 2A, PKC\(\beta\) and MLC\(\alpha\)

Triphosphorylation

J Vasc Res 2010;47:115–127

121

...ylation of PKC\(\beta\) was increased by the 15-min stretch, and this increase was inhibited by Gö6976 (1 \(\mu\)M) or Y-27632 (1 \(\mu\)M), an inhibitor of rho kinase. OA (1 \(\mu\)M) also increased the phosphorylation of PKC\(\beta\). This phosphorylation was inhibited by Gö6976 (1 \(\mu\)M), but not by Y-27632 (1 \(\mu\)M). The increase in phosphorylated PKC\(\beta\) was not the result of changes in the total amount of PKC\(\beta\) because immunoblot analysis with anti-nonphosphorylated PKC\(\beta\) antibody showed that lysate contained a similar amount of PKC\(\beta\) after stretching or OA treatment.

The 15-min stretch stimulated PKC\(\beta\) activity in the cytosol measured using a nonradioactive protein kinase assay kit, and the PKC\(\beta\) activity was inhibited by Gö6976, but not by Y-27632. Taken together, the results suggest...
that phosphorylation of PKCα at Ser-657 causes its activation in the cytosol without any sustained translocation of PKCα from the cytosol to the membrane.

Effects of Stretching on PP2A Activity

We recently reported that OA at a low concentration (1 μM) relaxed 80 mM KCl-induced contraction of the canine basilar artery with a concomitant decrease in the activity of PP2A, and an increase in triphosphorylated MLC20[17]. Thus, we investigated whether or not stretching also inhibited PP2A activity, leading to subsequent events such as triphosphorylation of MLC20 and inhibition of contraction. The activity of PP2A, expressed in arbitrary units, which was significantly inhibited by the 15-min stretch, was reversed by Y-27632 (1 μM) but not by Gö6976 (1 μM) (fig. 4), indicating the involvement of the rhoA/rho kinase system in the PP2A inhibition induced by stretching. The amount of PP2A measured using immunoblot analysis was not significantly different in any of the reaction mixtures (fig. 4, inset).

Physical Association of PKCα with PP2A

It has been proposed that activation of PP2A by stimuli leads to dephosphorylation and inactivation of PKCα and subsequent responses in smooth muscle cells [29]. A physical association between PKCα and PP2A was determined (fig. 5). Immunoprecipitation and Western blot analysis showed the constitutive expression of both PKCα and PP2A in both unstimulated and stretched basilar arteries (fig. 5a, b). Immunoprecipitates of PKCα, when probed with anti-PP2A catalytic subunit (PP2Ac) antibody, demonstrated the presence of PP2A in the unstimulated artery but not in the stretched artery (fig. 5c). To confirm further the association of PKCα and PP2A, lysates were immunoprecipitated with anti-PP2Ac antibody and then blotted with anti-PKCα antibody. The presence of PKCα was observed in the immunoprecipitations of PP2A from unstimulated basilar artery but not from the stretched artery (fig. 5d). Thus, PKCα and PP2A were physically associated in the basilar artery, and this association was inhibited by stretching.

Effect of Stretching and OA on Phosphorylation of CPI-17

Finally, we examined whether or not CPI-17 activity was involved in MLC20 triphosphorylation by stretching or OA (fig. 6) because it has been reported that the inhibition of MLC phosphatase (MLP) (PP1) through CPI-17 phosphorylated by PKCα and PKCβ also augments MLC20 phosphorylation [30]. In the resting state (basal), a small amount of CPI-17 was phosphorylated. The phosphorylation of CPI-17 was increased by stretching, and this increase was inhibited by either Gö6976 (1 μM) or Y-27632 (1 μM). The phosphorylation of CPI-17 was also increased by OA (1 μM). However, this increase was inhibited by Gö6976 (1 μM) but not by Y-27632 (1 μM).

Discussion

In the present study, we have demonstrated that activation of PKCα mediated by inhibition of PP2A is primarily involved in the stretch-induced triphosphorylation of MLC20 in the canine basilar artery. Moreover, this mechanism has a self-inhibitory action on the contraction induced by stretching.
It has been reported that PKCα may be involved in stretch-induced contraction of the rat basilar artery [31, 32] and in pressure-induced contraction of the ferret coronary artery [33], and that stretching produces a sustained translocation of PKCα from the cytosol to the cell membrane. In the present study, however, the 15-min stretching caused triphosphorylation of MLC20 mediated by PKCα without any sustained translocation of PKCα (fig. 1, 3). This response was accompanied by a stimulation of PKCα phosphorylation at Ser-657, and PKCα activity in the cytosol and was significantly blocked by a cPKC inhibitor Gö6976 (fig. 3). Phosphorylation of PKCα at Ser-657 accumulates the active enzyme [34]. To our knowledge, this is the first evidence demonstrating the activation of PKCα without any sustained translocation.

As is well documented, PP2A and PKCα are physically and functionally associated in various cells, including human and mouse mast cells [21], smooth muscle cells [29], and COS cells [35]. In vitro, PKCα activity can thus be inhibited through dephosphorylation by PP2A [36]. Our findings also showed that PKCα and PP2A were physically associated in the nonstretched canine basilar artery, and these were dissociated by stretching through inhibition of PP2A activity (fig. 4, 5). OA, similar to stretch, increased PKCα phosphorylation at Ser-657 and PKCα activity (fig. 3) as well as MLC20 triphosphorylation (fig. 1). PKCα phosphorylation at Ser-657 and PKCα activity stimulated by OA has been also reported in mast cells [21]. Thus, it is likely that the activity of PKCα is increased not only by phosphorylation of Ser-657 but also by the inhibition of PP2A in the cytosol, which may play an essential role in the stretch-induced MLC20 triphosphorylation without any sustained translocation of PKCα.

Five possible sites of phosphorylation have been reported for MLC20 of chicken gizzard: Ser-19 and Thr-18 for MLCK [37], and Ser-1, Ser-2 and Thr-9 for PKC [38–40]. In this study, stretching and OA increased MLC20 triphosphorylation at both MLCK sites (Ser-19 and Thr-18) and the PKC site (Thr-9) in the canine basilar artery (fig. 1, 2). Of these sites, phosphorylation of the PKC site (Thr-9) induced by either stretching or OA was completely inhibited by Gö6976, indicating the primary role of PKCα in the phosphorylation of Thr-9. On the other
hand, Gö6976 inhibited phosphorylation of Ser-19 and Thr-18 (MLCK sites) induced by OA to the resting level, but partially reduced these phosphorylations induced by stretching. These results suggest that in addition to phosphorylation of Thr-9 by PKCα, PKCα-dependent and -independent phosphorylation of Ser-19 and Thr-18 are involved in stretch-induced triphosphorylation of MLC

We have reported that rhoA/rho kinase plays a key role in the mechanism underlying stretch-induced triphosphorylation in canine basilar artery [8]. Y-27632, an inhibitor of rho kinase, eliminated only the responses to the 15-min stretch, such as augmentation of PKCα activity (fig. 3) and inhibition of PP2A activity (fig. 4), whereas the inhibitor had no apparent effect on the similar responses to OA. These results suggest that activation of rho/rho kinase by stretching has an inhibitory action on PP2A; however, further studies will be necessary to determine whether rho/rho kinase phosphorylates PP2A directly.

Rho kinase phosphorylates MLCP at its myosin binding subunit (MYPT1), which leads to an elevation of MLC phosphorylation at MLCK sites [41, 42]. We have suggested that MLCP inactivation by rho kinase seems to be involved in the stretch-induced phosphorylation of MLC at Ser-19 and Thr-18 [8]. On the other hand, the crosstalk between PKCα and CPI-17 has also been reported as an alternative pathway, which leads to augmentation of phosphorylation of MLC at MLCK sites [30, 43, 44]. Accordingly, CPI-17 phosphorylated by PKCα or PKCδ accelerates the inactivation of MLCP [30]. Phosphorylation of CPI-17 induced by stretching and OA was inhibited by Gö6976 (fig. 6). Thus, it seems possible that stretching and OA increase MLC phosphorylation at Ser-19 and Thr-18 through the inhibition of MLCP by PKCα-mediated CPI-17 phosphorylation. MLC phosphorylation at Thr-9 induced by stretching and OA was inhibited by Gö6976 (fig. 2). Taken together, the results suggest that the triphosphorylation of MLC in response to stretching involves not only diphosphorylation of MLC at Ser-19 and Thr-18 by the MLCP inhibition, which is mediated through phosphorylation by rho kinase and PKCα-mediated phosphorylation of CPI-17, but also additional phosphorylation of MLC at Thr-9 by PKCα.

In vitro, OA blocks PP2A and 1 (PP1) activities at 0.1–10-nM concentrations, although it is 100-fold more effective against PP2A [45, 46]. In intact cells, higher concentrations (up to 1 μM) are required to achieve an effect similar to that seen in vitro [47, 48]. MLC phosphorylation induced by OA (1 μM) was practically inhibited by Gö6976 (fig. 1, 2). OA-stimulated phosphorylation of CPI-17 was also inhibited by Gö6976 (fig. 6). Therefore, the present results suggest that OA (1 μM) does not directly inhibit MLCP (PP1) in canine basilar artery.

Diphosphorylation of MLC at Ser-1/2 and Thr-9 [38, 49] or monophosphorylation at Thr-9 [50], induced by PKC, inhibits the MLCK-induced increase in actin-activated myosin ATPase activity in vitro, and hence, would
be expected to counteract smooth muscle contraction. However, the studies with intact and permeabilized smooth muscle fibers, including rabbit aorta [28], porcine carotid artery [51] and bovine trachea [52], do not support the idea that PKC-catalyzed MLC$_{20}$ phosphorylation at Ser-1/2 plays a role in such physiological functions as smooth muscle contraction. In the present study, stretching produced the triphosphorylation of Ser-19, Thr-18 and Thr-9 without contraction (fig. 1, 2). This triphosphorylation has produced decreased shortening velocity and stiffness [8]. Gö6976 slowed the gradual reduction in stretch-induced contraction (fig. 1a). It has been considered that the phosphorylation of MLC$_{20}$ at Ser-19 and Thr-18 mediated by rho kinase and CPI-17 is involved in Ca$^{2+}$ sensitization of smooth muscles to agonists [44]. We also recently reported that OA phosphorylated Thr-9 of MLC$_{20}$ in the canine basilar artery via PKCo, which led to the relaxation of 80 mM KCl-induced contraction [17]. Therefore, phosphorylation of MLC$_{20}$ at Thr-9 may act in a self-inhibitory manner on stretch-induced tension development.

We previously showed that BK channel blockers increased the contractile responsiveness to stretch [7]. Considering that the inhibition of BK channels under pathophysiological conditions such as intracellular acidosis [13] and type 1 diabetes [14] results in increasing vasoconstriction of cerebral artery, the inhibitory action mediated by MLC$_{20}$ triphosphorylation may play a role in the regulation of vascular smooth muscle contractility under physiological and pathophysiological conditions.

Taken together, we propose here the sequence of events involved in the triphosphorylation of MLC$_{20}$ and the concomitant reduction in the contraction in response to stretching (fig. 7). Stretching activates rho/rho kinase, and the activated rho kinase phosphorylates MLCP at its myosin-binding subunit, inactivating MLCP. Alternatively, rho/rho kinase also leads to the inactivation of PP2A, resulting in activation of PKCo. The activated PKCo also inactivates MLCP through CPI-17 phosphorylation. The inactivation of MLCP leads to an increase in the level of MLC$_{20}$ phosphorylation at Ser-19 and Thr-18 by MLCK. Furthermore, the activated PKCo phosphorylated MLC$_{20}$ at an additional site (Thr-9), resulting in the triphosphorylation of MLC$_{20}$ and the concomitant reduction in stretch-induced contraction. Inhibition of PP2A by a low concentration of OA also activates PKCo. Thus, a similar mechanism with the exception of rho-kinase-mediated phosphorylation of MLCP appears to underlie OA-induced triphosphorylation of MLC$_{20}$.

We have previously mentioned the physiological/pathophysiological significance of the multiple phosphorylation of MLC$_{20}$ with special reference to the 'Bayliss effect' [8]. Briefly, we emphasize the notion that stretch-induced triphosphorylation of MLC$_{20}$, especially Thr-9 phosphorylation, may act in a self-inhibitory manner on tension development. We consider the Bayliss effect in a modern sense in that the myogenic response to hemodynamic factors such as pressure and stretch play an important role not only in the genesis of basal vascular
tone, but also in a brake mechanism via stretch-induced triphosphorylation of MLC\textsubscript{20} for excessive vasconstriction (fig. 7).

In summary, we have provided evidence demonstrating that slow stretching induces inhibition of PP2A activity leading to activation of PKC\textsubscript{a}, which augments triphosphorylation of MLC\textsubscript{20}. Of the triphosphorylated amino residues of MLC\textsubscript{20}, the phosphorylated Thr-9 via PKC\textsubscript{a} has a self-inhibitory action on the stretch-induced contraction.

Acknowledgments

The present study was supported in part by grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and by grants from the Shizuoka Research and Development Foundation. We would like to thank Dr. Paul Langman for his kind assistance with English usage.

References

Phosphatase 2A, PKCα and MLC_{20}

Triphosphorylation

127

