Effects of Interleukin-4 or Stem Cell Factor on Mast Cell Mediator Release and Cytokine Gene Expression

<table>
<thead>
<tr>
<th>J.W.</th>
<th>Coleman a</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.G.</td>
<td>Buckley a</td>
</tr>
<tr>
<td>A.M.</td>
<td>Taylor a</td>
</tr>
<tr>
<td>E.M.S.</td>
<td>Banks a</td>
</tr>
<tr>
<td>C.M.M.</td>
<td>Williams a</td>
</tr>
<tr>
<td>M.R.</td>
<td>Holliday a</td>
</tr>
<tr>
<td>J.</td>
<td>Thompson b</td>
</tr>
</tbody>
</table>

aDepartment of Pharmacology and Therapeutics, University of Liverpool, and bGlaxo Research and Development Limited, Greenford, UK

Key Words
- Mast cells
- Stem cell factor
- Mediator release
- Cytokine genes
- Interleukin-4

Abstract

We have investigated the capacity of interleukin (IL)-4 or stem cell factor (SCF) to induce direct mediator release from rodent peritoneal mast cells, and also to induce or regulate cytokine gene expression in the human HMC-1 mast cell line. SCF, but not IL-4, induced low levels of serotonin release from mouse or rat peritoneal mast cells; rat mast cells acquired enhanced responsiveness to SCF during culture. IL-4, but not SCF, enhanced ionomycin-induced transcription and secretion of several genes, including the cytokines IL-3, IL-4, granulocyte/macrophage-colony-stimulating factor, IL-8 and the receptor for IL-6 in the human HMC-1 mast cell line.

Correspondence to: Dr. J.W. Coleman, Department of Pharmacology and Therapeutics, University of Liverpool, PO Box 147, Liverpool L69 3BX (UK)

Introduction

Studies in rodents have shown that the secretory behaviour of tissue mast cells is subject to in vivo regulatory influences independently of the IgE response [1, 2]. In vitro studies provide evidence that cytokines may be the agents responsible for this regulation [3-6]. For example, interferon (IFN)-γ generated by splenic T cells inhibits IgE/antigen-dependent histamine and serotonin release from isolated mouse peritoneal mast cells [3, 4] while interleukin (IL)-3 and IL-4 enhance mast cell mediator release [5, 6]. IFN-γ and IL-4 also reciprocally control release of arachidonate from mast cells [6].

As well as T-cell-derived cytokines, the fibroblast- and stromal-cell-derived cytokine, stem cell factor (SCF), the ligand at the receptor encoded by the proto-oncogene c-kit, up-regulates IgE/antigen-induced serotonin release from mouse peritoneal mast cells [5].

In this article we report further studies examining the effects of IL-4 or SCF on mast cells; first as direct agonists of serotonin release from rodent peritoneal mast cells, and second, as inducers and regulators of cytokine gene expression in a human mast cell line.

SCF, but not IL-4,
Induces Mast Cell Serotonin Release
Freshly isolated purified mouse or rat mast cells released low levels of serotonin (\(< 15\%\)) in response to 30 min challenge with SCF at concentrations up to 500 ng/ml, but failed to respond to IL-4 [for methods see ref. 5]. Rat mast cells maintained in culture progressively acquired responsiveness to SCF such that by 48 h the cells released \(> 30\%\) net serotonin after challenge with 100 ng/ml SCF. This increase in responsiveness to SCF was accompanied by increased re-

© 1995 S. ItargerAG, Basel 1018-2438/95/1073-0154 $8.00/0

sponsiveness to anti-IgE but not compound 48/80 or calcium ionophore A23187 [Taylor et al., unpubl. results].

IL-4, but not SCF, Up-Regulates Induced Cytokine Expression in HMC-1 Mast Cells

Incubation of HMC-1 human mast cells with IL-4, but not SCF (each at 100 ng/ml), for 24 h enhanced expression of mRNA encoding several genes that were induced when the cells were stimulated with ionomycin, including IL-4, granulocyte/macrophage-colony-stimulating factor, (GM-CSF), IL-6 receptor (fig. 1), IL-3 and IL-8 [7], but not tumour necrosis factor-\(\alpha\) or \(\beta\)-actin. Quantitation of the relative levels of IL-3, IL-4 and IL-8 mRNA by competitive PCR [7] revealed that IL-4 enhanced ionomycin-induced IL-3 mRNA expression 6-fold, IL-4 2-fold, and IL-8 4-fold. HMC-1 cells activated by ionomycin for 1 h and then cultured for 24 h released detectable levels of IL-3 and IL-8 product (measured by ELISA). Pretreatment of the cells with IL-4 for 24 h led to a 15- to 20-fold increase in ionomycin-induced IL-3 release (peaking at 24 h), and a doubling of ionomycin-induced IL-8 release (peaking at 8 h) [7]. The effects of IL-4 on gene expression were not accompanied by any increase in HMC-1 cell number or proliferation rate, and thus represent a true gene regulatory effect.

Conclusions

Fig. 1. Effects of IL-4 on HMC-1 cell mRNA expression. Duplicate cultures of HMC-1 cells (2×
106/ml in 2 ml) were incubated for 24 h with 100 ng/ml IL-4 (lanes B, D) or culture medium alone (A, C). The cells were then washed and challenged for 4 h with either ionomycin (lanes C, D) or medium alone (A, B). The cDNA generated from these cells was amplified by PCR using primers for IL-4, GM-CSF and IL-6 receptor (IL-6R). M indicates molecular size markers. Arrows indicate the predicted position of the PCR products. \(\beta\)-Actin mRNA levels were constant for all treatments.

cells, whereas IL-4, but not SCF, enhances the induced expression of some cytokine genes and their secreted products, and some cytokine receptors in the HMC-1 human mast cell line.

Although IL-4 and SCF are both able to up-regulate IgE/antigen-induced mediator release from mouse peritoneal mast cells, they exert quite distinct effects as direct mediator-releasing or cytokine gene regulatory agents. SCF, but not IL-4, induces degranulation of rodent peritoneal mast

Acknowledgement

This work supported by the Wellcome Trust, the Crossley-Barnes Fund and by our industrial collaborators.

References

Holliday MR, Dearman RJ, Kimber I, Coleman JW: Sensitization of mice to chemical allergens modulates the responsiveness of isolated mast cells to IgE-dependent activation. Immunology 1993;78:508-510.

