Identification of *Blomia tropicalis* Allergen Blo t 5 by cDNA Cloning

<table>
<thead>
<tr>
<th>First Initial</th>
<th>Last Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.K.</td>
<td>Karla</td>
<td>Arruda^a</td>
</tr>
<tr>
<td>E.</td>
<td>Enrique</td>
<td>Fernandez-Caldas^b</td>
</tr>
<tr>
<td>C.K.</td>
<td>Charles K.</td>
<td>Naspitz^c</td>
</tr>
<tr>
<td>F.</td>
<td>Federico</td>
<td>Montealegre^d</td>
</tr>
<tr>
<td>L.D.</td>
<td>Lisa D.</td>
<td>Vailes^a</td>
</tr>
<tr>
<td>M.D.</td>
<td>Martin D.</td>
<td>Chapman^a</td>
</tr>
</tbody>
</table>

^aAsthma and Allergic Diseases Center, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, Va., ^bUniversity of South Florida College of Medicine, Tampa, Fla., USA; ^cPaulista School of Medicine, Sao Paulo, Brazil; and ^dPonce School of Medicine, Ponce, Puerto Rico

Key Words

Blomia tropicalis
Mites
Allergens
Molecular cloning
Asthma

Correspondence to: Dr. L. Karla Arruda, Asthma and Allergic Diseases Center, Box 225, University of Virginia, Charlottesville, VA 22908 (USA)

Introduction

Mites of the genus *Blomia*, including *Blomia tropicalis* and *Blomia kulaginii*, are an important cause of IgE antibody responses among asthmatic patients in tropical and subtropical areas of the world. Exposure to *B. tropicalis* has been documented in houses from Hong Kong, Brazil, Venezuela, Colombia, Taiwan, India, Spain, Egypt and other countries [1-3]. In the United States, *B. tropicalis* has been identified in significant numbers in homes from Tampa Fla., New Orleans, La., Memphis, Tenn., Galveston, Tex., Delray Beach and San Diego, Calif. [4]. There has been increasing interest in the antigenic cross-reactivity between *Blomia* and *Dermatophagoides* spp., since exposure to both mite species is very common in such environments. *Blomia* spp. are the source of multiple allergens, the majority of which are species specific, as judged by results of serologic analysis and skin testing [3-6]. However, at present no purified *Blomia* allergens have been reported. We have used molecular cloning techniques to further identify, characterize and sequence *B. tropicalis* allergens. Expression of the recombinant allergens will allow studies on the immune responses to *B. tropicalis*, and development of methods for assessing risk levels of exposure to this mite.

Methods and Results

IgE antibody responses to *B. tropicalis* were studied in a panel of sera of asthmatic patients from Brazil, Puerto Rico and Florida (n = 83), and compared to patients with asthma or atopic dermatitis from Charlottesville, Va., and England (n = 56), who were allergic to *Dermatophagoidespteronyssinus* but unlikely to have been exposed to *B. tropicalis*. In the first
group, 83% of B. tropicalis radioallergosorbent test (RAST)-positive patients also had a positive RAST to D. pteronyssinus. The ratio D. pteronyssinus/B. tropicalis RAST was > 10 in only 22% of the patients, probably reflecting exposure to both mite species. In contrast, although 50% of the Virginia/England D. pteronyssinus RAST-positive subjects also had positive RAST to B. tropicalis, the ratio D. pteronyssinus/B. tropicalis RAST was > 10 in 68% of the patients and this difference was significant (p < 0.001). Our results are in keeping with previous studies and suggest that only 20-30% of B. tropicalis allergens may be shared with D. pteronyssinus.

A cDNA library was prepared from B. tropicalis mRNA and screened with human IgE antibodies. A representative 522-bp cDNA clone was sequenced, containing a 432-bp open reading frame. The predicted amino acid sequence showed approximately 40% sequence homology to Der p 5, a 14-kd D. pteronyssinus allergen [7]. Plaque immunoblot assay results revealed that 70% of B. tropicalis RAST-positive asthmatic patients had IgE to the cloned protein. The B. tropicalis allergen has been designated as Bio 15. To obtain purified recombinant allergen, Bio t 5 cDNA was subcloned into the pGEX-4T1 vector and expressed in Escherichia coli as a fusion protein with glutathione S-transferase. Following thrombin cleavage, the B. tropicalis allergen was released and purified over glutathione agarose. Results of an antigen-binding RIA showed that 12/12 B. tropicalis RAST-positive selected patients had IgE and IgG antibodies to recombinant Bio 15, whereas nonallergic controls showed no binding to this allergen.

Discussion
nus allergen Der p 5; however, no sequence homology with other proteins has been identified and the function of these proteins remains unknown. IgE to Der p 5 has been reported to be present in 50% > of D. pteronyssinus-allergic patients [7], whereas IgE to Bio 15 appears to occur in a greater proportion of B. tropicalis-allergic patients. This observation suggests that Bio 15 may be a more important allergen in B. tropicalis than the homologous molecule in D. pteronyssinus. Further studies using recombinant Bio t 5 and Der p 5 are underway in our laboratory to examine in detail the antigenic cross-reactivity between these two proteins.

Acknowledgements
This work was supported by National Institutes of Health grants AI 20565 and AI 34607. A major B. tropicalis allergen has been identified, sequenced and produced in a recombinant from in E. coli. Bio t 5 shares amino acid sequence homology to D. pteronyss-

References
Tovey ER, Johnson MC, Roche AL, Cobon GS, Baldo BA: Cloning and sequencing of a cDNA expressing a recombinant house dust mite protein that binds human IgE and corresponds to an important low molecular weight allergen. J Exp Med 1989;170:1457-1462.