Effect of Beta-Carotene on Histamine Release from Human Mast Cells and Monocytes

W. Wolfgang Schmutzler
M.d.M. Maria del Mar Gladis-Villanueva
K. Karin Bolsmann
U. Ursula Braam
G. Gabriele Zwadlo-Klarwasser

Institute of Pharmacology and Toxicology, Medical Faculty RWTH, Aachen, Germany

Key Words
β-Carotene
Solutol
Mast cells
Histamine release
Monocytes

Free radicals have been shown to originate from monocytes and to activate mast cells, which might be an important process in inflammatory reactions [1]. Some radical scavengers, e.g. certain dihydrochinolines or – less efficiently – superoxide dismutase, as well as the synthetic reti-noids isotretinoin and etretinate, have been shown to inhibit histamine release from human adenoidal mast cells [2]. In view of the recent interest in nonprovitamin, especially the antioxidative properties of carotenoids [3], we studied the effects of β-carotene on histamine release from human adenoidal and skin mast cells, as well as from human peripheral monocytes, which have recently been shown to serve as important sources of histamine in blood [4].

β-Carotene is rather unstable, must be protected from light, stored in airtight containers and can be made water-soluble for application in cellular systems only with the help of a suitable solubilizer such as certain polyoxyl compounds, e.g. solutol HS 15 [5]. Therefore, it was essential to test both the solubilized β-carotene and the solubilizer, which were gifts from the manufacturer (BASF, Ludwigs-hafen, Germany). All concentrations were related to the final concentration of β-carotene in the cell samples.

Human adenoidal mast cells were obtained and isolated mechanically [6]; skin mast cells were obtained enzymat-ically using collagenase [7] and human peripheral monocytes as previously described [8].

Mast cells (approximately 1×10^7/sample) were preincu-bated with solutol HS 15 without or with added β-carotene for 5 min in Hanks’ buffer, and the monocytes (approximately 3 × 10^6/sample) for 60 min, in Iscoves’ medium.

Table 1 shows that IO-4 Mthe solubilizer solutol HS 15 at inhibited the histamine release from all three cell types investigated, whereas it increased it at 10 3M β-Carotene, however, caused a rather graded dose-dependent inhibition of histamine release over the range of 10-6 to 10-4M and reduced the solutol-induced release at 10-3M in mast cells, with only little effect in
monocytes. The results demonstrate a synergistic effect of β-carotene and its solubilizer solutol HS 15 in human adenoidal and skin mast cells and suggest the use of this particular combination as an antiallergic or anti-inflammatory drug.

KAHGER
E-Mail karger < a karger.ch Fax +41 61306 12 34 http://www.karger.ch
© 1997 S.KargerAG, Basel 1018-2438/97/1133-0335 S 12.00/0
This article is also accessible online at: http://BioMedNet.com/karger

Table 1. Influence of β-carotene and solutol HS 15 on net histamine release (percent of total) from human mast cells and monocytes

References

336
Int Arch Allergy Immunol 1997;! 13:335-336
Schmutzler/Gladis-Villanueva/Bolsmann/ Braam/Zwadlo-Klarwasser
International Archives of Allergy ,,,d Immunology