Renal Involvement in Psoriasis

O. Kaftan
B. Kaftan
M.F. Toppare
M. Ekşiğlu

Departments of Internal Medicine and Pediatrics, Turkish Health and Therapy Foundation Medical Center Hospital, and Department of Dermatology, Ankara Hospital, Ankara, Turkey

Key Words
Psoriasis
Kidney dysfunction
β2-Microglobulin
Microvasculature

In psoriasis, the presence of intercellular adhesion molecule 1, endothelial leukocyte adhesion molecule and angiogenic factor in the dermal papillary vascular endothelium predicts microvascular involvement [1]; however, evidence of systemic vascular involvement is still scarce. In psoriatic patients with diffuse involvement, renal impairment and cardiovascular diseases are reported to occur [2]. We have recently studied the renal functions of psoriatic patients with moderately extensive skin involvement in search of kidney dysfunction.

Thirty-five patients with histologically documented psoriasis were enrolled as the patient group after informed consent had been obtained. The duration of the disease, the disease severity (%) and the ESI score (erythema, squame, inflammation) were recorded. A group of healthy and age-matched controls (n = 36) was also included. Serum albumin, blood urea nitrogen (BUN), serum creatinine, routine urinalysis, urine creatinine, creatinine clearance, urine microalbumin and urine β2-microglobulin were quantitatively determined in the patient and control groups. All the subjects in both groups underwent renal ultrasonographic examination.

Urine β2-microglobulin was determined by a solid-phase immuno-radiometric assay (Coat-A-Count IRMA). The assay was based on monoclonal and polyclonal anti-β2-microglobulin antibodies: one 125-I-labeled anti-β,-microglobulin monoclonal antibody in liquid phase and one polyclonal anti-β2-microglobulin antibody immobilized to the wall of a polystyrene tube. The pH of urine was adjusted to 7 adding 1.0 M NaOH. The samples were then stored at -20 °C for a period of not more than 4 weeks until analysis. Urine microalbumin was determined by a competitive radioimmunoassay in which l2T-labeled albumin competes with albumin in the patient sample for antibody sites. The procedure has a detection limit of approximately 0.3 μg/ml.

The general characteristics of the groups are given in table 1. All the measured parameters of renal functions with the exception of β2-microglobulin (p = 0.047) were similar. Multiple regression analysis revealed that no factor significantly affected the β2-microglobulin levels;
however, disseminated skin lesions significantly affected micro-albumin excretion (p = 0.001). There were correlations between creatinine clearance and β2-microglobulin (p = 0.047) and between urinary microalbumin and the ESI score of the patients (p = 0.014). Duration of the disease did not have any effect on urinary β2-microglobulin or albumin excretion. All renal ultrasonograms were normal in the controls and in the study group.

Urinary albumin excretion in small amounts is accepted to be due to glomerular endothelial dysfunction. The amounts exceeding 30 mg/24 h reflect widespread vascular damage [3]. Although all our cases had urinary albumin levels below pathological limits, it is not clear why the mean level in the patient group was somewhat elevated compared to controls.

To the best of our knowledge, this is the first report on urinary excretion of β2-microglobulin in psoriasis. β2-Microglobulin was first isolated in 1968 from the urine of patients with Wilson’s disease and was subsequently found to be elevated in cadmium poisoning [4]. It has since been identified as the light chain of the HLA-A, -B and -C major histocompatibility complex antigens. In structure and amino acid sequence, it resembles the CH3 region of IgG, though it is antigenically distinct. β2-Microglobulin occurs on the surface of nucleated cells – particularly abundantly on lymphocytes and monocytes -and on many tumor cell lines. It has been reported to be elevated in urine in several conditions like rheumatoid arthritis [5] and Kawasaki disease [6]. Rates higher than 370 µg/24 h are interpreted as evidence of tubular dysfunction [7]. Though in the present study, there was a significant difference between the patient and control groups, the results were still within normal limits which is evidence against renal tubular involvement, and the lack of microalbuminuria is evidence against renal glomerular involvement in psoriatic patients with moderate skin involvement.

KARGER
E-Mail karger@karger.ch Fax + 41 61 306 12 34
© 1996 S. Karger AG, Basel 1018-8665/96/1922-0189 $ 10.00/0

References

Dermatology 1996; 192:190
Mast Cells in Psoriasis
S.O. Özdamar”, D. Seçkin», B. Kandemir”, A.Y. Turanli”
Departments of
Pathology and
Dermatology, Ondokuz Mayis University School of Medicine,
Samsun, Turkey

Key Words
Psoriasis · Mast cells ■ Toluidin blue · Immunohistochemistry
Recent studies have shown that mast cells may play a role in the pathogenesis of psoriasis [1].
Toluidin blue reaction is the conventional method used for investigation of mast cells. Lysozyme
muramidase), α-antitrypsin (AAT), and CD68 antibodies are well-defined markers of
histiocyte and monocyte lineage and these antibodies may react with mast cells.
The study included 20 patients with psoriasis vulgaris and 20 controls. The biopsy specimens for
controls were obtained from healthy skin tissue of patients with basal cell carcinoma after
excision. Lesional psoriatic skin and control specimens were fixed in 10% buffered formalin and
embedded in paraffin wax. Sections were cut at 5 µm and stained with 0.001% toluidin blue (pH
4.00); immunostain-ing was performed with the previously described streptavidin biotin
peroxydase method [2]. The following antibodies were used: CD68 (KPI, monoclonal, mouse),
AAT (polyclonal, rabbit), and lysozyme (polyclonal, rabbit) (Biogenex Laboratories, San
Ramon, USA). The number of reactive cells was counted in 10 high power fields (HPF) (5
subepidermal, 3 middermal, 2 deep-dermal zones) (Nikon Optiphot-2 microscope, ×40 ocular,
×40 objective; 1 HPF = 0.125 mm2) [3]. Results are expressed as mean ± SEM. Student’s t test
was performed for statistical analysis.
The number of mast cells with positive toluidin blue reaction was significantly higher in lesional
psoriatic skin (8.27 ± 0.66) than in controls (3.11 ± 0.41) (p < 0.05). The number of cells with
positive CD68, AAT, and lysozyme staining was not significantly different between psoriasis
and controls (table 1).

Table 1. Number of cells positive with CD68, AAT and lysozyme (mean ± SEM) (1 HPF =

CD68(KP1) AAT Lysozyme Toluidin blue
Psoriasis 1.80 ± 0.18 2.08 ± 0.33 2.02 ± 0.47 8.27 ± 0.66Control 1.96 ± 0.36 1.75 ± 0.16 1.52 ±
0.19 3.11±0.41p > 0.05 > 0.05 > 0.05 < 0.05

This study showed increased mast cells in psoriasis, and thus confirms previous reports [1, 4]. To
our knowledge lysozyme, AAT and CD68 (KPI) antibodies have not been previously studied in
psoriasis and our investigation shows that the use of these antibodies does not reveal any
difference between psoriasis and normal skin tissue.
There is different staining of mast cells with toluidin blue reaction and lysozyme, AAT, and
CD68 (KPI) in psoriasis; the cause and significance of this difference remain to be defined by
further studies.
References
Harvima IT, Naukkarinen A, Harvima RJ, Aalto M-L, Neitaanmaki H, Horsmanheimo M:
Quantitative enzyme-histochemical analysis of tryp-tase- and chymase-containing mast cells in
Wilkinson B, Jones A, Kossard S: Mast cell quantitation by image analysis in adult mastocytosis
Schubert C, Christophers E: Mast cells and macrophages in early relapsing psoriasis. Arch
Dr. Sükrü Özdamar, Ondokuz Mayis University School of Medicine. Department of Pathology,
Kurupelit, TR-55139 Samsun (Turkey)

19() Dermatology 1996:192:189-190
Letters to Dermatology