A Simple Quantitative Culture of *Malassezia* spp. in HIV-Positive Persons

<table>
<thead>
<tr>
<th>M.</th>
<th>Pechère</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.</td>
<td>Remondat</td>
</tr>
<tr>
<td>C.</td>
<td>Bertrand</td>
</tr>
<tr>
<td>L.</td>
<td>Didierjean</td>
</tr>
<tr>
<td>J.-H.</td>
<td>Saurat</td>
</tr>
</tbody>
</table>

Department of Dermatology, Geneva University Hospital, Geneva, Switzerland

**Key Word**

*Malassezia*

Quantification

Method

HIV

**Abstract**

**Background:** Etiological role of *Malassezia* spp. remains controversial in certain skin diseases. **Objective:** To adapt a 'tape method' for quantitative culture of *Malassezia* spp. **Method:** Samples for culture were taken from clinically normal forehead skin of HIV-positive and negative persons by stripping with a tape that was then placed on Leeming & Notman medium. The number of colonies was counted after 14 days. **Results:** 74/78 (94.8%) cultures were positive, for a median count of 9 CFU/tape (range 0 to >200). High skin density of *Malassezia* spp., defined as more than 100 CFU/tape, was found in 7/38 (18.4%) HIV-positive persons and was absent (0/40) in the HIV-negative group (p < 0.01). **Conclusion:** The method used is simple, unexpensive and reliable. High *Malassezia* spp. density was only found in HIV-positive patients.

Dr. Marc Pechère, Department of Dermatology, Geneva University Hospital, CH-1211 Geneva 14 (Switzerland)

**Introduction**

*Malassezia* spp. are lipophilic yeasts resident on adult human skin [1]. The genus *Malassezia* comprises three species: *Malassezia* furfur, an obligatory lipophilic organism commonly found on human skin; *Malassezia pachydermatis*, a nonobligatory lipophilic species normally found on animals but occasionally isolated from humans, and *Malassezia symposialis* exceptionally found in humans [2, 3]. The etiological role of *Malassezia* spp. has been proved in certain diseases like intravascular catheter-associated sepsis [4] but remains controversial in others such as seborectic dermatosis and atopic dermatitis. Little is known about this microorganism despite its ubiquity. At the present time, micromorphological descriptions are the major method of taxonomic classification. More objective methods of classification based on genetic, biochemical and physiological properties were not easily available because the organism could not be easily cultivated.

In the last few years, new media have been described [5, 6] and quantitative methods have been developed using a contact plate [7 – 9], a tape method [10] or a scrubbing technique [6, 11]. We have adapted a tape method on Leeming & Notman medium for quantifying *Malassezia* spp. density on the skin.

**Methods**
Samples for culture were taken from clinically normal forehead skin by stripping with a tape measuring 6 cm² (Opsite IV3000, Smith & Nephew). Thereafter, the tapes were placed on a 'milk' medium. In a preliminary study, olive oil medium was used.

Milk medium was described by Leeming and Notman [5]; it contains (per liter of medium) 10 g bacteriological peptone (Oxoid), 5 g glucose (Sigma), 0.1 g yeast extract (Oxoid), 4 g desiccated ox bile (Oxoid), 1 ml glycerol (Sigma), 0.5 g glycerol monostearate (BDH), 0.5 ml Tween 60 (Sigma), 10 ml whole-fat cow’s milk (average fat content 3.7%, homogenized, ultra-high-temperature treated), 50 µg/ml chloramphenicol, 200 µg/ml cycloheximide and 12 g Agar number 1 (Oxoid). Olive oil medium was Sabouraud-chloramphenicol medium (Bio-Méreux, Lyon, France) with 5% of commercial olive oil.

Plates were incubated at 37 ºC in a plastic bag for 14 days and the number of colonies (colony forming unit, CFU) was counted. When colonial morphologic analysis was atypical, Malassezia spp. was confirmed by gram staining and the absence of growth on Sabouraud and trypticase soy agar medium. Malassezia spp. density was classified into 3 categories: low density with < 50 CFU/tape, intermediate density with more than 50 but less than 100 CFU/tape and finally high-density with > 100 CFU/tape.

Samples were taken from the forehead of 78 workers or patients of the Geneva University Hospital; 38 were HIV positive and 40 had negative or presumed negative HIV serology.

Results
Sampling required less than 2 min/case and was always well tolerated. In a preliminary study, olive oil medium was used in 20 HIV-negative persons. Cultures were positive in 15/20 (75%) for a median count of 5 CFU/tape (range 0-24). With this high rate of negative culture (25%), the following experiments were done on milk medium. On

© 1995 S.Karger AG. Basel 1018-8665/95/1914-0348 $ 8.00/0

Table 1. Malassezia spp. density in HIV

<table>
<thead>
<tr>
<th>Density</th>
<th>HIV-</th>
<th>HIV+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0</td>
<td>4*</td>
</tr>
<tr>
<td></td>
<td>(n = 40)</td>
<td>23</td>
</tr>
</tbody>
</table>

Exact Fisher’s test: *p > 0.05, **p < 0.01.

Leeming & Notman medium, 74/78 (94.8%) cultures were positive, for a median count of 9 CFU/tape (range 0 to > 200). Colonies appeared after 72 h and were maximal after 14 days. Three kinds of colonies were found: (1) white-creamy in color, < 3 mm, flat, with undulated margin; (2) like (1) but larger (3-5 mm) and lighter in color and raised, and (3) white-creamy in color, < 2 mm with a 'crystalline' appearance. These different colony types could not be ascribed to different microscopic morphologies. Each of them seems obligatory lipophilic and could not grow on Sabouraud or on trypticase soy agar medium. Candida spp. were found in only 1 case. In this case, colonies were white in color, > 3 mm, regular and grew easily on Sabouraud medium. M. pachydermaïis, described as 7 mm, domed, irregular colonies
were not isolated in our series. The majority of volunteers (60/78, 77%) had a low Malassezia spp. density. Intermediate density was found in 7/78 cases (9%) and high density was found in 7/38 (18.4%) HIV-positive patients and were absent (0/40) in the HIV-negative group (p < 0.01). Table 1 shows the distribution of Malassezia spp. in normal skin in this series.

Discussion

We have adapted the ‘milk’ medium of Leeming & Notman for a quantitative culture of Malassezia spp. with a tape method. Milk medium appeared to have several advantages over oil medium because Malassezia spp. grew faster, more easily, and colonies were well delimited and easier to read. The superiority of this medium has been shown previously [6]. Of the 4 negative cultures, 2 came from HIV-positive patients who took flu-conazole, a drug which can inhibit M. furfur [12].

The choice of the tape is important. Under Opsite IV 3000, Malassezia spp. grew harmoniously over the whole surface. In preliminary experiments, we used Scotch brand 3M and observed that colonies preferentially grew on the edges of the tape.

This method offers many advantages over the ‘contact plates method’. For example, it can be used for skin areas difficult to access like the nasolabial folds. The tape can be cut when analysis of a small lesion is required. The tape method is simpler and less time consuming than the scrubbing technique.

As described previously [1, 3], three cultural groups based on colonial morphology were identified; this indicates that M. furfur probably includes different obligatory lipophilic yeasts. In the future, genome analysis will probably help to better determine micro-bial taxonomy of species and strains of Malassezia [13].

High Malassezia spp. density was found only in HIV-positive patients without clinical evidence of dermatosis. Wilker et al. [14] found low Malassezia density in HIV-sero-positive patients. We can explain this difference because they studied a small group of 21 patients and used an olive oil medium which is less performant for the culture of M. furfur.

References


