Melnick-Fraser Syndrome

Table: Names and Affiliations

<table>
<thead>
<tr>
<th>Initial</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.</td>
<td>Torres-Peris</td>
</tr>
<tr>
<td>E.</td>
<td>Jorda</td>
</tr>
<tr>
<td>D.</td>
<td>Ramon</td>
</tr>
<tr>
<td>J.</td>
<td>Peiro</td>
</tr>
<tr>
<td>A.</td>
<td>Revert</td>
</tr>
<tr>
<td>T.</td>
<td>Torres-Larrosa</td>
</tr>
</tbody>
</table>

Department of Dermatology and Venereology, Department of Radiology, Clinic Hospital University of Valencia, Spain

Vicente Torres-Peris, Titular professor, Avenida Blasco Ibañez 17, CP 46010 Valencia (Spain)

The branchio-otorenal (BOR) syndrome is an autosomal dominant disorder characterized by preauricular pits or branchial fistulas, hearing loss and renal anomalies.

Case Report

An 8-year-old girl had small bilateral pits on the concha of her auricle at birth (fig. 1). When she was 5 years old, her parents noticed a progressive hearing loss, and at the age of 7 years the audiological examination showed moderate sensorineural hearing loss in the right ear and severe hearing loss of 25%, especially for high-frequency sounds, in the left ear. Hypoplasia of the left kidney was identified by an intravenous pyelogram (fig-2). Rachischisis at the level of the 5 lumbar vertebrae was present. The girl had a normal 46 XX karyotype, normal stature and a normal intelligence index; she has a palatum ogivale. There was consanguinity between the parents; no similar case was known in the family.

Fig. 1. Small pit on the concha of the patient’s left auricle.

Fig. 2. Melnick-Fraser syndrome. Hypoplasia of the left kidney identified by intravenous pyelogram.
The BOR syndrome was reported by Melnick in 1975 [1]. It is characterized by three major anomalies: structural abnormalities of the external, middle and inner ear, ear pits and preauricular fistulas; hearing loss; renal abnormalities including agenesis, aplasia, hypoplasia and ureteral anomalies.

Other anomalies can also be present: facial asymmetry, lacrimal duct stenosis, palate abnormality; small, low-set ears bilaterally or unilaterally. The hearing loss may be sensorineural in 25%, mixed in 50% or conductive in 25% [2].

Recent reports suggest at least three separate syndromes that induce abnormalities of the branchial arches and hearing impairment together with renal abnormalities: (1) the BO syndrome with no renal involvement; (2) the BOR syndrome with abnormalities of all three systems; (3) the BOU syndrome in which the renal anomalies are limited to duplication of the collecting system and bifid renal pelvis [3, 4].

Heimler and Lieber [5] suggested that the BOU and BO syndromes represented variable manifestations of the BOR gene. The prevalence of the BOR syndrome is approximately 1/40,000 [6].

The BOR syndrome seems more frequent as indicated in textbooks and the current literature as it may affect about 2% of all deaf-born children. Deafness appears in 80%, ear pits and preauricular fistulas in 75% and renal involvement is found in 20% of the cases. Today all authors accept that the BOR syndrome is an autosomal dominant disorder [7, 8] manifested by various combinations of preauricular pits or lacrimal duct stenosis, but this disorder has a reduced penetrance and variable expressivity [5].

References

104
Torres-Peris/Jorda/Ramon/Peiro/Revert/ Torres-Larrosa
Melnick-Fraser Syndrome