What Is New on Sweat Glands

Walter Gebhart, MD, Department of Dermatology II, University of Vienna, Vienna (Austria)

The past decade’s explosive progress in dermatological research is not only tightly linked to ever improving biochemical, immunological or micromorphological methodology, but also grounded in partnership with rapid and reliable distribution of data at an international level. The paper ‘Idiopathic acquired generalized anhidrosis: Electron microscopic and immunohistochemical studies and analysis of lectin binding pattern of the cell membrane’ by Terui et al. in this issue holds up as an example that this progress is recently expanding from originally epidermis-oriented efforts to appendageal structures, and in particular to sweat glands.

In fact, a great number of major studies on human sweat glands have been performed by Japanese researchers. Although Kurosumi et al. [1] in their comprehensive review discreetly attribute this circumstance to the frequent excisions of odorous axillary skin in their country, the application of advanced techniques on these samples and continuous monitoring of general knowledge are major impact factors on progress in this field. And undoubtedly, our views upon the structural and functional significance of sweat glands are presently changing.

Not only the differences between eccrine and apocrine secretion mechanisms have become vague. The sweat gland organ is also no longer merely a structure destined for cooling and elimination of waste products, but a physiologically most important part of the body participating in essential metabolic, hormonal and immunological aspects of human life as well as in psychosocial communication. Detailed ultrastructural studies have challenged the concept of distinct ‘eccrine’ and ‘apocrine’ secretion modes much more than was thought in the beginning. In secretory coils of eccrine glands, a dark cell type has been found to show exocytotic discharge of granules, apical blebbing and eventually also cellular disruption as seen in typical apocrine secretion. Therefore, the classification used in general mammalian biology should also be applied to human sweat glands. The distinction is made on the basis of the gland’s relationship to the skin surface. Typical mammalian sweat glands open into the hair follicle and are thus called ‘epitrichial’ (= apocrine or ‘a-gland’). For the primates, however, the characteristic sweat gland type is the tube-like ‘atrichial’ (= eccrine or ‘e-gland’), opening freely onto the epidermal surface. Despite serious demands that the terms ‘apocrine’ and ‘eccrine’ should be discarded [2], they are still widely used and well understood even though they are only established names.

The morphology of human atrichial eccrine glands has been extensively studied in all its complicated 3-dimen-sional coiled or straight portions and excellently reviewed by Hashimoto et al. [3] in 1986. Five major portions have been identified and each section seems to be attributed to different functions. The secretory coils contain clear serous cells and a luminal rim of dark mucoid cells. Myoepi-thelial cells form a surrounding layer, which fades away as the coil passes over into the transitional portion. This first part of the dermal duct still seems to produce some
precursor sweat, whereas the next portions, the coiled duct as well as the following straight
dermal duct, are probably more active in reabsorption of various molecules. The final
intraepidermal portion, called acrosyringium, is lined by horny cells which inspite of their
keratinization supply a number of hydrolytic and proteolytic enzymes. Careful studies of these
glands and ducts have taught us that morphology depends largely upon the functional stage of
the individual organ. After thermal stimulation, there is a marked increase in cytoplasmic
vacuolization, particularly of luminal cells, a widening of the intercellular spaces and the
presence of particulate matter in the lumen of activated glands and ducts [4]. Yet, even within the
same biopsy the morphology of neighboring e-glands may differ conspicuously due to
differences in individual stimulation. Thus, a need for further establishment of criteria correlating
the structure of glandular cells with their actual functional stages emerges.
The functional significance of sweat glands themselves is presently also subject to change. In
contrast to the past, thermoregulation can no longer be looked upon as their domain, but
metabolization of electrolytes, mucopoly-saccharides, hormones and other biologically important
molecules comes into the focus of interest. Various
122
Editorial

enzymes, prostaglandins, receptors for steroid or sexual hormones, aldosterone responsiveness
and high susceptibility to peptide hormones such as antidiuretic hormone or prolactin [5, 6]
reflect the integrated position of sweat glands in the complex interactions of a living organism. In
the light of recent findings it appears not unlikely that atri-chial as well as epitrichial organs may
also produce and secrete biological response modifiers and hormones by themselves. A most
interesting report in this context presents evidence of a modulation of female menstrual cycles by
male sweat gland secretions [F.J.G. Ebling, personal commun.. 1987].
Finally, the immunological performance of skin appears to be extended via sweating to regions
unreachable for living cells under normal conditions. Immunoglobulin A, the major mediator of
surface immunity, has been demonstrated in ductal and intercanalicular portions of atri-chial
sweat glands [7]. In addition, Okada et al. [8] showed that J-chain as well as epithelial-cell-
derived secretory component are also present in sweat, thus proving that there is really active
secretory IgA dimer present in sweat glands.
Secretion of immunoglobulins is not only a possibility to get rid of them but is usually
purposefully performed in order to inactivate viral, bacterial, fungal or other anti-genic matter on
the body surface. In fact, secretory IgA have also been detected on the membranes of pityros-
poron species in human skin sections [9]. It appears therefore most likely that the protective
potentials of humoral immunity can be extended to the external skin surface by active secretion
via sweat.
The fact that epithelial sweat gland cells participate actively in this process by contributing the
secretory component to the slgA molecule should flare up an additional highlight in the changing
view of human atrichial gland function.
References
Kurosumi K. Shibasaki S. Ito T: Cytology of the secretion in mammalian sweat glands. Int Rev
Cytol 1984;87:253–329.
Montgomery I. McEwan Jenkinson D, Elder HY. et al: The effects of thermal stimulation on the