No. 1 Editorial
Hockwin, O.

Original Paper
Ultrastructural Investigation Demonstrating Reduced Cell Adhesion on Heparin-Surface-Modified Intraocular Lenses
Versura, P.; Maltarello, M.C.; Fontana, L.; Caramazza, R

Doxium® (Calcium Dobesilate) Reduces Blood Hyperviscosity and Lowers Elevated Intraocular Pressure in Patients with Diabetic Retinopathy and Glaucoma
Vojnikovic, B

Incidence of Posttrabeculectomy Cataract among Arabs in Kuwait
Al Samarrai, A.R.A.; Noor Sunba, M.S

Histological Differentiation in Fetal Organ-Cultured and Human Cataractous Eye Lenses
Veromann, S

An Improved Method of Vital Staining of the Corneal Endothelium (With 1 color plate)
Ruiz, J.M.; Medrano, M.; Alió, J.L

Zinc in Tears
Saatçi, A.O.; irkeç, M.; Özgüneş, H

Microradiographical Determination of the Dry Mass Density in the Rat Retina
Chen, E.; Chung, J.-H.; Söderberg, P.G.; Lindström, B

Polymorphonuclear Leukocytes and Bacterial Growth of the Normal and Mildly Inflamed Conjunctiva
Ugomori, S.; Hayasaka, S.; Setogawa, T

Selenium Concentration in Ocular Tissues and Fluids
McGahan, M.C.; Grimes, A.M

Anticataractogenic Property of γ-Glutamylcysteine Ethyl Ester in an Animal Model of Cataract
Ohtsu, A.; Kitahara, S.; Fujii, K

Heterogeneity of Lymphocytes from Aqueous Humor of Patients with Uveitis
Secchi, A.G.; Fregona, I.A.; Tognon, M.S.; Marcon, G.B

No. 2 Original Paper
Racial Variation of Optic Disc Size
Mansour, A.M

Histochemical Analysis of Experimental Granulomatous Uveitis
Kristeva, M.; Biswas, J.; Pararajasegaram, G.; Sevanian, A.; Rao, N.A

Nosocomial Infections of Ocular Conjunctiva in Newborns Delivered by Cesarian Section
Bezirtzoglou, E.; Romond, C
Treatment of S Antigen Uveoretinitis with Lipoxygenase and Cyclo-Oxygenase Inhibitors
Chen, F.; Pararajasegaram, G.; Sevanian, A.; Rao, N.A 84

Comparison of Phosphate Metabolites of the Ocular Humors
Greiner, J.V.; Chanes, L.A.; Glonek, T 92

Endothelial Cells of Rabbit Cornea in Different Storage Conditions. A Quantitative Cytochemical Study
Scharf, J.; Nahir, A.M 98

A Method to Quantify Neovascularization in the Mouse Cornea
Falkvoll, K.H 104

No. 3 Application of a Laser Scanning Microscope to the Morphological Study of Corneal Epithelium of Rabbits
Yamabayashi, S.; Suzuki, H.; Tsukahara, S 115

Suppression of S Antigen-Induced Uveitis by Vitamin E Supplementation
Pararajasegaram, G.; Sevanian, A.; Rao, N.A 121

Further Observations on the Prevention of Experimental Proliferative Vitreo-Retinopathy by 5-Fluorouracil
Ophir, A 128

Glutathione and Glutathione-Related Enzymes in Human Cataractous Lenses
Xie, P.Y.; Kanai, A.; Nakajima, A.; Kitahara, S.; Ohtsu, A.; Fujii, K 133

Pseudomonas aeruginosa: A Probe to Detail Change with Age in Corneal Receptor(s)
Hazlett, L.; Barrett, R.; Klettner, C; Berk, R.; Singh, A 141

Fluorescence Polarization and Circular Dichroism Studies on Aging Human Lens Proteins
Lerman, S.; Mandal, K 147

Acidic FGF and Other Growth Factors in Preretinal Membranes from Patients with Diabetic Retinopathy and Proliferative Vitreoretinopathy Fredj-Reygrobellet, D.; Baudouin, C; Nègre, F.; Caruelle, J.P.; Gastaud, P.; Lapalus, P. 154

Effect of Timolol on Human Retinal, Choroidal and Optic Nerve Head Circulation
Yoshida, A.; Feke, G.T.; Ogasawara, H.; Goger, D.G.; Murray, D.L.; McMeel, J.W. 162

Announcement 170

No. 4 Specific Radioimmunoassay to Investigate Rod Outer Segment Phagocytosis by Retinal Pigment Epithelium in vitro
Gregory, C.Y.; Converse, C.A.; Foulds, W.S 171

Effect of Experimental Ocular Hypertension on Macrovacuolation in Schlemm’s Canal Endothelial Cells of Monkey Eyes
Nakabayashi, M.; Kishida, K.; Okazaki, H 177

Contents
V

Double Hapten Challenge in Guinea Pigs Undergoing an Ocular Late-Phase Reaction
Leonardi, A.; Briggs, R.M.; Secchi, A.G.; Allansmith, M.R 187

Preventive Effect of Antioxidants on Lipid Peroxidation in the Retina
Hiramitsu, T.; Armstrong, D 196

Differential Effect of Chelation on the pH Tolerance of Corneal Epithelium in Tissue Culture
Meyer, D.R.; McCulley, J.P 204
Azathioprine and Cytarabine Applied Topically Prolong Corneal Graft Survival in Rabbits
Golubovic, S 213

Lipid and Protein Density in the Rat Retina: A Microradiographical Study
Chen, E.; Söderberg, P.G.; Lindström, B 220

Free Radical-Mediated Effects in Reperfusion Injury: A Histologic Study with Superoxide Dismutase and EGB 761 in Rat Retina
Szabo, M.E.; Droy-Lefaix, M.T.; Doly, M.; Braquet, P 225

No. 5 Radiation Sensitivity of Cultured Bovine Lens Epithelial Cells
Baumstark-Khan, C; Schneider, J; Rink, H 235

Prostaglandin E2 in the Vitreous Body of the Normal Rabbit Eye and after Ocular Trauma
Delft, J.L. van; Haeringen, N.J. van; Bodelier, V.M.; Barthen, E.R.; Oosterhuis, J.A. 240

pH, Ionized Calcium and Osmotic Artifacts Can Affect Determination of Rabbit Corneal Deturgescence in vitro
Doughty, M.J 246

Photooxidation of the Nonenzymatic Browning Products in Calf Lens α-Crystallin
Liang, J.N 259

Effect of Permeation Enhancers on Beta-Endorphin Systemic Uptake after Topical Application to the Eye
Rohde, B.H.; Chiou, G.C.Y 265

Naphthalene-Induced Cataract in the Rat. II. Contrasting Effects of Two Aldose Reductase Inhibitors on Glutathione and Glutathione Redox Enzymes
Tao, R.V.; Holleschau, A.M.; Rathbun, W.B 272

Roles of Catalase and the Glutathione Redox Cycle in the Regulation of Anterior-Chamber Hydrogen Peroxide
Costarides, A.P.; Riley, M.V.; Green, K 284

No. 6 Morphological Changes in the Optic Nerve after Chronic Exposure of Neonatal Rats to Cocaine and Amphetamine
Silva-Araújo, A.; Salgado-Borges, J.; Tavares, M.A 295

Influence of Iodide on Cataractogenesis in Emory Mice
Buchberger, W.; Winkler, R.; Moser, M.; Rieger, G 303

Molecules Specific to Pigment Epithelial Cells: Expression during in situ Development and in vitro Lens Transdifferentiation of Chick Embryo Pigment Epithelium
Kobayashi, H; Ueda, M.; Honda, Y 309

Ultrastructural Studies of Collagen Fibers of the Cornea and Sclera by a Quick-Freezing and Deep-Etching Method

Contents
Topical Administration of Leukotriene Antagonists in Immunogenic Keratitis
Delft, J.L. van; Haeringen, N.J. van; Barthen, E.R.; Best, J.A. van; Blackham, A. . . 330

Tear Volume in Early and Late Phases of Ocular Anaphylaxis in Guinea Pigs
Saiga, T.; Allansmith, M.R 335

Optical Problems of Anterior Chamber Depth Biometry by Scheimpflug Photography
Olbert, D 342

Author Index 348
Our best wishes to all our readers for a happy and successful 1991, which starts the 3rd decade of Ophthalmic Research. We are grateful for the support of our subscribers and the authors. We would also like to thank the staff of S. Karger for their support.

There are some improvements which we would like to achieve in the future, and take this seasonal opportunity to encourage good ‘New Year’s resolutions’.

An increasing number of journals require authors to include ‘confidence limits’ with the bald figures from statistical tests (and their p values). The latter may seem to imply the existence of hurdles with fixed heights, which is inconsistent with the philosophy of statistics. Accordingly, we ask our authors to take the added trouble to include confidence limits. Another basic statistical principle is that each observation in a series should be as independent as possible of all others. The practical implication in ophthalmology is that only one eye, randomly chosen, should be included in a statistical analysis [1]. An average result from the two eyes (considered as only one observation, i.e., contributing only one degree of freedom) would be often acceptable, provided that the right and left are correlated, but there is a small risk of an artefactual reduction in the variance.

Some considerations in relation to cataracts will attract strong editorial preference. Because ‘inherited cataract’ or ‘senile cataract’ are not single entities, subclassification may be very useful and in some instances even a prerequisite. Observations of the extent and location of opacities, preferably documented by objective methods including imaging, are often of great help in understanding the problems raised. In analogy, biochemical analysis of lenses should be carried out if necessary and possible on defined parts or single layers of the lens.

 Occasionally a paper is accepted with some reservation because invasive procedures have been done on both eyes of experimental animals. Readers may have noted other infringements. We would urge researchers involved in animal experiments to use only one eye if at all possible [see Handbook for the Use of Animals, ARVO, August 1990].

The range and rate of advances made not only in ophthalmology are a great contribution to ‘science’. The exponential growth in publications and even journals is inspiring, but imposes various burdens on the research community. The citing of every remotely relevant reference seems unnecessary in most contexts, and we suggest that selection is desirable. However, the originator of a new idea should be recognized, no matter how long ago his original publication appeared.

Another burden, but a very pleasant and rewarding one, is that we have to read more and more papers and journals, no matter how much we compensate by super-specialization – perhaps even because we dig more deeply into a restricted area. To assist the voracious enquiring minds scanning the journals late at night, and in airplanes and trains, we would make a plea for an improvement in the abstracts. Writing these is a difficult art. Do not waste space by expanding the title (which nowadays is usually highly informative, though long). Giving the reader the results and conclusions is more important than detail about experimental methods, although these should be briefly indicated. Do not waste time and space by saying that, for example, ‘the reasons are discussed’, instead, present what you think is the main reason.

In the same vein, a follow-up paper often refers the reader to a previous publication for experimental method, and without that information the paper is unintelligible to a new reader. A very brief account of, say, the experimental method is required to allow a follow-up paper to be
free-standing. Similarly, graphs and pictures should have explanatory captions which allow them to be understood without reference to the text of a paper.

Authorship is also a cause of concern. A byproduct of super-specialization is the need for collaboration. The trend for basic scientists to work with clinicians is admirable and to be encouraged. The discrimination between technician and scientist is decreasingly valid. We are less sympathetic to the insistence of some heads of departments that their names appear as co-author of all papers from that department. Conversely, we are not sympathetic to the inclusion of individuals who have done very little, none of it creation – commendable enough – has been to encourage a junior member of the staff. The originator of the new idea, if significant, is the one most deserving of recognition, of course.

Culliton [2] quotes a passage from an impending product, ‘Guidelines for the conduct of research’, at the National Institutes of Health, USA: ‘... authorship is a privilege that belongs to those who make a significant contribution to the conceptualization, design, execution, and/or interpretation of the research study’.

The native English-speaking members of our editorial board are generous of their time and trouble in amending some papers to conform with standard usage. These editors often comment on the excellence of the English used by ‘foreigners’, often more grammatical than the language used by some natives, and are very sympathetic to those who are struggling. However, efficiency would be improved and delays in publication reduced if non-English authors could recruit English or American friends who are fully conversant with their subject to idiomatize their efforts before submission.

We look forward to your papers in the future and will publish them expeditiously. The time between receipt of a paper and its acceptance would be shortened if authors would keep in mind the points raised in this editorial. We encourage suggestions for improving our journal, as science progresses.

References
Culliton BJ: The ideal scientist described. Science