Although negative pressure ventilation (nPV) is an effective therapy for patients with restrictive lung disease [1] its position in the management of chronic ventilatory failure due to chronic obstructive pulmonary disease (COPD) is less clear. In the largest study to address this question Shapiro et al. [2] randomised 184 patients to receive either nPV or a sham treatment; no benefit was observed in any outcome measure including daytime PaCO₂. Although this result confirmed some earlier reports [3, 4], other investigators had found (in much smaller studies) that a reduction in PaCO₂ was possible both during the application of nPV [5, 6] and during spontaneous respiration after a more prolonged period of therapy [5].

Thus one explanation for the findings of Shapiro et al. [2] could be that the patients failed to be adherent to nPV or that the ventilator was not able to sufficiently unload the respiratory muscle pump. In this issue of Respiration Kössler et al. [7] present data that goes some way to answer this question. Twenty-one patients with severe COPD (mean FEV₁ 28% predicted) were studied. Each patient underwent 6 h of therapy for 5 days a week; 19 patients were able to accept nPV. For these patients unloading of the diaphragm was confirmed by surface electromyography at each nPV session. Despite achieving an 80% reduction in the electrical activity of the diaphragm during respiration no significant change was observed in daytime PaCO₂, 6-minute walk distance or respiratory muscle strength or endurance. Thus it seems unlikely that the lack of efficacy of nPV demonstrated by previous investigators [2–4] is simply due to insufficient rest of the respiratory muscles.

Kössler et al. [7] also concluded from these data that chronic fatigue had not been present in their patients since respiratory muscle unloading failed to result in an increase in inspiratory muscle strength as judged by the oesophageal or transdiaphragmatic pressure generated during a maximal voluntary sniff. As with the PaCO₂ previous investigators have found differing effects of nPV on inspiratory muscle strength, though previously this measurement has been made using the maximal static inspiratory mouth pressure. Respiratory muscle fatigue may be defined as a loss of tension (or pressure) generating capacity resulting from activity under load which is reversible by rest [8]. Two distinct physiological forms of fatigue are low and high frequency; in these conditions the loss of pressure generating capacity is specifically observed in response to stimuli of low (typically 10–20 Hz) and high (typically >50 Hz) frequencies, respectively. The form of fatigue which is long-lasting, and therefore most likely to
be of clinical relevance, is low frequency fatigue [9], but
the inspiratory mouth pressure and sniff manoeuvres
both involve short bursts of intense activity and are there-
fore regarded as high frequency manoeuvres. Therefore
although Kössler et al. [7] may be correct to argue that
fatigue does not play a role in the development of ventila-
tory failure in COPD this cannot be conclusively demon-
strated from their study design. The most appropriate
technique to address this question would be magnetic
phrenic nerve stimulation and this technique is known to
be acceptable to patients with COPD [10, 11].

If the lack of benefit of nPV cannot be explained by
technical problems this suggests that patients with COPD
are difficult to ventilate which, in turn, suggests the need
for carefully controlled studies to evaluate the place of
non-invasive positive pressure ventilation in COPD.
Therefore, it is reassuring that two large randomised con-
trolled trials are in progress in France and Italy.

References
1 Goldstein RS, Molotiu N, Skrastins R, Long S, De Rosie J, C	

ontreas M, Popkin J, Rutherford R, Phillipson EA: Reversal of sleep induced
hypoventilation and chronic respiratory failure
by nocturnal negative pressure ventilation in
patients with restrictive ventilatory impair-
1055.
2 Shapiro SH, Ernst P, Gray-Donald K, Martin
JG, Wood-Dauphinee S, Beaupré A, Spitzer
WO, Macklem PT: Effect of negative pressure
ventilation in severe chronic obstructive pul-
3 Belman MJ, Soo Hoo GW, Kuei JH, Shhad-
mehr R: Efficacy of positive vs negative pres-
sure ventilation in unloading the respiratory
4 Zibrak JD, Hill NS, Federman EC, Kwa SL,
O'Donnell C: Evaluation of intermittent long-
term negative-pressure ventilation in patients
with severe chronic obstructive pulmonary dis-
1518.
5 Cropp A, DiMarco AF: Effects of intermittent
negative pressure ventilation on respiratory
muscle function in patients with severe chronic
obstructive pulmonary disease. Am Rev Respir
6 Nava S, Ambrosino N, Zocchi L, Rampulla C:
Diaphragmatic rest during negative pressure
ventilation by Pneumowrap. Assessment in
normal and COPD patients. Chest 1990;98:
857–865.
7 Kössler W, Lahrmann H, Brath H, Wei T,
Frank W, Wild M, Zwick H, Wanke T: Feed-
back-controlled negative pressure ventilation
in patients with stable severe hypercapnic
chronic obstructive pulmonary disease. Respi-
8 NHLBI Workshop summary. Respiratory mus-
cle fatigue. Report of the Respiratory Muscle
Fatigue Workshop Group. Am Rev Respir Dis
9 Edwards RHT, Hill DK, Jones DA, Merton
PA: Fatigue of long duration in human skeletal
muscle after exercise. J Physiol (Lond) 1977;
272:769–778.
10 Polkey MI, Kyroussis D, Keilty SEJ, Hamne-
gard CH, Mills GH, Green M, Moxham J:
Exhaustive treadmill exercise does not reduce
twitch transdiaphragmatic pressure in patients
with COPD. Am J Respir Crit Care Med 1995;
152:959–964.
11 Polkey MI, Kyroussis D, Hamnegard C-H,
Mills GH, Green M, Moxham J: Diaphragm
strength in chronic obstructive pulmonary dis-
ease. Am J Respir Crit Care Med 1996;154:
1310–1317.