Guide to Paediatric Drug Development and Clinical Research

Editors

Klaus Rose Munich
John N. van den Anker Washington D.C./Rotterdam

19 figures, and 23 tables, 2010
Contents

IX Introduction
XIII The Editors
XV Authors’ Addresses

The Global Framework of Paediatric Drug Development

1 Europe and the Path to Better Medicines for Children
 Ramet, J. (Edegem); Lehman, B. (Bonn); Rose, K. (Basel)

6 European Union Paediatric Regulation: Theory and Practice
 Wright, E. (Brussels); Rose, K. (Basel)

12 United States Paediatric Legislation Impact on Paediatric Drug Studies

15 Facilitation of Paediatric Research in Japan
 Nakamura, H.; Ozaki, M. (Tokyo)

23 Ethical Imperatives in Medical Research on Child Subjects – Reflections of a Past President of the World Medical Association
 Appleyard, W.J. (Kent)

32 Paediatric Clinical Research: The Patients’ Perspective
 Kent, A. (London/Brussels); Oosterwijk, C. (Brussels/Soest); Poortman, Y. (The Hague)

40 Providing Global Access to Essential Medicines for Children – The WHO Better Medicines for Children Programme
 Hoppu, K. (Helsinki); Hill, S. (Geneva)

Paediatric Clinical Pharmacology

46 Paediatric Clinical Pharmacology: From Bench to Bedside
 van den Anker, J.N. (Washington, D.C./Rotterdam)

51 Role of Clinical Pharmacology in the Development of Paediatric Clinical Development Plans
 Reigner, B.; Ricci, B.M.; Liogier d’Ardhuy, X. (Basel)
Practical and Ethical Challenges

60 Guide through the EMA Paediatric Website
Rose, K. (Basel); Granzer, U. (Munich); Della Pasqua, O. (Stockley Park)

64 Paediatric Homework: Paediatric Investigation Plan Key Elements
Rose, K. (Basel); Della Pasqua, O. (Stockley Park)

71 Ethics in Paediatric Research: Three Years after the Introduction of the European Regulation
Matthys, D. (Ghent); Rose, K. (Basel)

75 Consent and Assent in Paediatric Clinical Trials
Simar, M.R. (Austin, Tex.); Fowler, P.A. (Hertford)

83 Study and Protocol Design for Paediatric Patients of Different Ages
Della Pasqua, O. (Stockley Park); Zimmerhackl, L.B. (Innsbruck); Rose, K. (Basel)

97 Points to Consider when Planning the Collection of Blood or Tissue Samples in Clinical Trials of Investigational Medicinal Products in Children, Infants and Neonates
Hawcutt, D.B.; Rose, A.C. (Liverpool); Fuerst-Decktenwald, S. (Basel); Nunn, T.; Turner, M.A. (Liverpool)

General and Specific Scientific Challenges

111 What Constitutes Adequate Strength of Evidence?
Day, S. (Welwyn Garden City)

117 Paediatric Formulations
Tuleu, C. (London); Solomonidou, D. (Basel); Breitkreutz, J. (Düsseldorf)

128 The Future of Oral Paediatric Formulations
Bar-Shalom, D. (Copenhagen)

131 Paediatric Pharmacovigilance in Clinical Research and Drug Development
Mentzer, D. (Langen); Day, S. (Welwyn Garden City)

138 Role of Non-Clinical Safety Assessment in Paediatric Drug Development
De Schaepdrijver, L.M. (Beerse)

144 Paediatric Critical Care
Goldstein, B. (Clinton, N.J./New Brunswick, N.J.); Nelson, R.M. (Silver Spring, Md.); Nadel, S. (London)

Disease-Specific Challenges

155 Research and Drug Development in Paediatric Oncology
Massimini, G.; Rose, K. (Basel); Vassal, G. (Villejuif); Pritchard-Jones, K. (Sutton)

160 Paediatric Cancer Treatment in Africa
Renner, L.A. (Accra)

164 Paediatric Clinical Research in Immunology and Inflammation
Bolte, C. (Basel); Senolt, L. (Prague); Gay, S. (Zurich)

170 Clinical Trials of Anti-Infective Agents in Paediatrics
Lutsar, I. (Tartu); Friedland, I. (Lexington, Mass.)
178 Obesity in Children
Hebebrand, J. (Essen)

187 Familial Dyslipidaemia in Children

196 Paediatric Anti-Hypertensive Clinical Trials and Various Factors Influencing Trial Success or Failure
Li, J.S.; Benjamin, D.K., Jr. (Durham, N.C.); Severin, T. (Basel); Portman, R.J. (Princeton, N.J.)

206 Paediatric Vaccination Trials
Ceddia, F. (Wavre); Podda, A. (Siena); Vesikari, T. (Tampere)

Future of the Paediatric Pharmaceutical Market

212 Future of the Paediatric Pharmaceutical Market
Grek, V. (Paris); Rose, K. (Munich)

215 Author Index

216 Subject Index
Children in the developed world have never enjoyed better medical care. Life expectancy is increasing, and child mortality is improving in most countries. However, the more we can do, the more we also see what could be done better. Every week five new genetically based rare diseases are described – for most of them there is no effective treatment and children with these diseases die early. Cancer in children is no longer untreatable. With the use of chemotherapy, radiation and surgery around 75% of the children survive. However, there are still several cancers in children where treatment is unsatisfactory, and the quality of life of many surviving children is seriously affected. The survival of children with cancer is one of the greatest success stories of medical research in the 20th century. It was not achieved by revolutionary break-through medication, but by combining the chemotherapeutic agents that reached the market in the 1940s and 1950s in new ways and new doses. From 1970 on, with each decade of diagnosis the survival of children with, e.g., acute lymphatic leukemia increased by 10–15% and is today around 90%. But in hindsight, many lives could have been saved earlier had we known how to use the existing medication. This gap was closed by systemic testing and is probably the best argument to show the value of clinical research in and with children. There are other success stories, including the advances in vaccines, surgery, nutrition, and many more.

The rapid advancement of scientific understanding of even more details of the human body combined with the availability of a large group of new genetically engineered medications has increased the desire to make these new treatment options available to children as soon as possible. This is the aim of the EU Paediatric Regulation, in force since January 2007, that has resulted in the formation of the Paediatric Committee, the strengthening of the paediatric department in the European Medicines Agency, and the submission of hundreds of Paediatric Investigation Plans by the pharmaceutical industry.

On the other hand, there are the children in developing countries that are exposed to diseases that in the majority of cases could be easily treated using existing medicines. In the days of modern communication technology, the visibility of these children and the theoretical possibility to help them with access to existing medication have increased the expectations that these children should receive more attention in general and specifically should receive better health care.

The public discussion about medicines for children and the health of children in the developed as well as in the developing world has in the past years reached an unprecedented intensity. One main driver has been the introduction of the EU paediatric regulation, in force now since January 2007, which has exposed pharmaceutical industry to an unprecedented need to include
children into the drug development process. An additional driver has been the launch of the WHO campaign 'make medicines child size', which is drawing increased attention to the health of children in the developing world. Further drivers are the increased collaboration between the regulatory authorities of the USA, EU, Japan and other countries and regions in their effort to bundle forces to promote better medicines for children.

On a different level, and less visible for the general public, there have been multiple developments at the clinical, scientific, academic and educational levels. Paediatric clinical pharmacology has established itself as an academic discipline in its own right, represented by the two large international organizations PPAG and ESDP. But what is paediatric clinical pharmacology?

Firstly, paediatric clinical pharmacology is the work of clinical pharmacologists in hospital pharmacies. They advise paediatricians and people in other medical disciplines that take care of ill children on the appropriate dosing of a given medication. They provide the appropriate, mostly extemporaneously prepared, formulation of medications where a child-friendly and age-appropriate formulation is not provided by the manufacturer.

Secondly, paediatric clinical pharmacology is the research undertaken by academic clinical pharmacologists that measure the absorption, distribution, metabolism, and excretion of medicines in children. It was due to their work that a common understanding evolved on how all body functions of the child mature at a different pace. This paediatric clinical pharmacology has, among others, elucidated that a much higher variability in ADME exists in children and that the degree of this high variability further increases if the child or infant has additional issues such as fever, stress, malnutrition or obesity, or is receiving multiple medications.

Thirdly, clinical pharmacology is the discipline in the pharmaceutical industry that tries to predict the dose of a given new medication when administered to children for the first time. Part of this work is modeling and simulation (M&S). M&S allows estimating the first dose of a given medication in a child. This assumed first dose has to be verified against the predicted serum concentration of the medication. If necessary, the prescribed dose has to be adapted based on the observed factual serum concentrations, and, in consequence, the underlying M&S assumptions have to be corrected. It would be unethical to expose children to a drug where basic safety and efficacy data have not yet been established in adults. Consequently, phase 1 clinical trials in healthy volunteers that are routine in adult drug development are not allowed in children. Therefore, clinical pharmacology data in children can only be generated in a setting where a child should benefit from the therapeutic potential of the drug in discussion. As a consequence, paediatric clinical pharmacology in the drug development process can by definition only happen in the framework of phase 2 or phase 3 clinical trials.

Clinical pharmacology is also the discipline in pharmaceutical industry that is part of the multi-disciplinary development team that brings a drug through the development process from initial discovery through preclinical and clinical testing to the registration as a medicine. The roles of the clinical pharmacologists in this process include advising on the doses to choose for clinical trials, time point of first exposure of a given drug in adult healthy volunteers, advice on the appropriate time point of a first paediatric exposure, advice on dose adaption in case of renal, hepatic or other impairments, and many more.

The two first types of clinical pharmacology concern drugs that are already existing. Modern drugs have evolved with industrialization and the ability of chemical engineering. Increasingly, biological engineering plays an important role in drug development. When we talk about off-label use of drugs in children we should not forget that modern labels have only evolved since the Kefauver-Harris acts in the USA in 1962 and that drugs in the modern sense of the word only exist for just over 100
years. On the background of this evolution, paediatric clinical pharmacology has been a logical consequence of this development. As always, it only seems to be a logical consequence in hindsight. If we look at the time axis, we see that paediatric clinical pharmacology is only at its early stages.

The level of clinical pharmacology service in hospitals and the level of collaboration with the discipline of paediatrics varies considerably. 'Advanced' hospitals have an own department of paediatric clinical pharmacology. 'Less advanced' hospitals just have a department of clinical pharmacology which may or may not include one paediatric clinical pharmacist who talks with the paediatricians. And let us not forget those hospitals in less-developed countries that may have only one pharmacist for the entire hospital. How paediatricians and clinical pharmacologists interact varies from country to country and from hospital to hospital. The collaboration is driven partially by science and partially by tradition.

Research in children is less developed than research in adults. Not all publications on research in children have the methodological scrutiny that has become standard in adult publications. That there is room for improvement is perceived by the most advanced representatives of the professional learned societies of paediatrics, pharmacology, clinical pharmacology and paediatric clinical pharmacology. On the other hand, most paediatricians are rather conservative. They have learned their profession, are proud of their profession, and are not very exposed to paediatric research in their daily clinical work. Speaking of better medicines for children must take into account the different levels of awareness that exists. Conferences on clinical pharmacology and paediatric clinical pharmacology have in recent years had sessions that were specifically dedicated to the new paediatric legislation in the USA and EU as well as to the WHO campaign 'make medicines child size'. Interestingly, the interest of paediatric practitioners has been rather limited. The call for better medicines for children is a movement that is represented and driven forward by a relatively small group within the professional bodies of paediatric pharmacology and clinical pharmacology. It is a movement that still is not strongly represented in the mindset of practicing paediatricians.

Key organizations to promote academic paediatric clinical pharmacology are the IUPHAR and the ESDP. Their key representatives have, together with key representatives from the International Pediatric Association (IPA), established a movement that culminated in the foundation of the IA: International Alliance for Better Medicines for Children. The journal *Pediatric Drugs* is now the official journal of this alliance.

The ethics of research in children is another area. Several issues are at its core. Basic dilemmas are the interest of the child, its inability in young years to represent its interests on its own, and the need of parents to decide in the best interest of their children, in short, their legal status. All involved institutions must balance the potential benefit of a new medication with the potential risk it may carry. But risks are not fully predictable. In consequence, the degree to which potential risks are accepted varies considerably over time depending of tragedies that happen, serious threats like a pandemic that has the potential to change the perception of need risk taking, and many, many more factors.

Ethics committees/IRBs have the institutional obligation to systematically evaluate paediatric research projects. Ethics committees need paediatric expertise. With the number of paediatric research projects increasing, the number of ethics committees that are exposed to paediatric research is increasing as well. The debate of ethics in paediatric research has therefore several elements. One is the question of right and wrong. Another one is the operational organization of decision processes by ethics committees. The literature on ethics in paediatric research is immense and growing. Dilemmas in daily clinical work exist and can by definition not be resolved. They must be handled operationally.
On the other side, the forced exposure of pharmaceutical and medical device industry to paediatric research and an increased academic discussion about paediatric research will also open new dimensions of ethical challenges. Large companies have own departments of quality assurance and are used to scrutiny by the public. Smaller companies have to now deal with paediatric development as well – and they do not have a dedicated paediatric infrastructure. They will be the tempted to find quick solutions. Hopefully this will just remain a temptation. We all know that human nature is immune to temptations. Another temptation will be academicians without proper background and experience who will nevertheless try to get research funds for paediatric projects. For an ethics committee, it is easier to reject a research project from a pharmaceutical company than from a fellow academic. We will over the next years and decades see a lot of movement.

Drug development in general is multidisciplinary. Paediatric drug development reflects as a microcosm the complexity of drug development, narrowed to the specific focus of children. The main disciplines that come in, apart from paediatricians, clinical pharmacologists, ethics, ethics committees and parents and patients, are the departments dedicated to the development of paediatric formulations; the departments that have to run the preclinical pharmacology, safety and toxicology in vitro and in vivo with animals; the clinical development departments, and the departments that are responsible for trial methodology.

This planet is not a perfect place. There is no planet’s government. There is war, and there is peace, there are regions with some order and other regions with a lot of corruption. Even in the richest countries children’s pharmaceutical and medical treatment was not as perfect as professionals thought long time it was. Diseases that were believed to be near extinction have re-emerged, there are new diseases and new health challenges, and a lot of more challenges. Different institutions address different dimensions. The WHO is focusing on frequent diseases in low income countries, predominantly tuberculosis, malaria and HIV/AIDS. There are other areas that are less visible to the general public. We have included one chapter on paediatric oncology in Europe, and a second one on paediatric oncology in Africa. For any child in Europe the diagnosis of leukemia was a death sentence 60 years ago. It is no longer today. But also a child in Africa has better survival chances today than decades ago. European and US paediatric oncologists support their African colleagues. Paediatricians from rich countries try to support their counterparts in less-rich countries. Where should funds be allocated? Who should allocate them? The development of new drugs for neglected diseases is today done more by private public partnerships than by the pharmaceutical industry. The funding often comes from philanthropic organizations such as the Gates or the Clinton foundation. It is almost impossible to keep an overview over the multitude of initiatives currently going on.

In this edition, we have tried to find suitable representatives of the various disciplines, voices and positions involved. Some key stakeholders are heavily involved in operational activities such as the regulatory authorities. Others have a more strategic role, e.g. the World Medical Association. The processes are complex and the different partners are sometimes on different sides. Although we have tried to keep the chapters to a high level, the final composition of this book’s faculty can by definition not be perfect. However, we have tried to elucidate the multitude of facets this movement has. The content of this book should give anybody with an interest in paediatric clinical trials and drug development sufficient material to see how complex the matter is and how many completely different disciplines have to work together. We simply tried our best. Many, many thanks to all the authors that have contributed. We hope that you will enjoy the reading.

John N. van den Anker
Klaus Rose
Dr. Klaus Rose was born in Heidelberg, Germany. He qualified in medicine in Berlin after initial studies in Romance languages and psychology leading to an MS in psychology. He completed his post-graduate clinical training in General Medicine in Germany and England before joining the pharmaceutical industry in 1991. Since then, he has held various positions in clinical development of progressively increasing responsibility culminating in 2002 in the position of Global Head Paediatrics, Novartis, Basel, Switzerland. In 2005, he joined Roche as Global Head Paediatrics and established a focus for excellence in paediatric drug development. Since 2010, he is Principal Consultant at Granzer Regulatory Consulting in Munich, Germany.

Dr. Rose is a frequent speaker on national and international conferences on paediatric drug development including academic conferences, the EFGCP (European Forum for Good Clinical Practice), the DIA (Drug Information Association), the ECPM (European Course of Pharmaceutical Medicines) and others. He was chairman of the IFPMA paediatric task force from 2008 to 2009 and is chairman of the EFGCP children’s medicines working party since its foundation in 2003.

He is married with two daughters. His private interests include Mediterranean-style cooking, good wine, gardening, Latin languages, and classical guitar.
Prof. Dr. John van den Anker was born in the Netherlands. He qualified in medicine in Rotterdam in 1983 and completed his post-graduate clinical training in General Paediatrics and Neonatal-Perinatal Medicine in 1991. In 1995, he successfully defended his PhD thesis in Clinical Pharmacology and in 1997 he became the Division Chief of Neonatology at Erasmus MC-Sophia Children's Hospital in Rotterdam. In 2001, he moved to the USA to direct one of the 13 NIH-funded Pediatric Pharmacology Research Units but stayed strongly connected with Erasmus MC-Sophia Children's Hospital. Currently, he is Vice Chair of Paediatrics for Experimental Therapeutics at Children's National Medical Center in Washington, D.C. and holds the Evan and Cindy Jones Chair in Paediatric Clinical Pharmacology. In addition, he is Professor of Paediatrics, Pharmacology and Physiology at the George Washington University.

Prof. Dr. van den Anker is currently 100% funded by the NIH for his clinical and translational research and is a frequently invited speaker on national and international conferences on paediatric clinical pharmacology. He was the President of the European Society for Developmental, Perinatal and Paediatric Pharmacology from 2006 to 2008 and a member of the Board of Directors of the American Society for Clinical Pharmacology and Therapeutics from 2005 to 2008. In 2008, he received the Distinguished Investigator Award from the American College of Clinical Pharmacology and is a member of the editorial board of the major clinical pharmacology journals. Finally, he has been a longstanding member of the Paediatric Working Party of the EMA representing the Netherlands.
Authors’ Addresses

William J. Appleyard, MD, FRCP
Thimble Hall
108 Blean Common
Blean
Canterbury, Kent CT2 9JJ (UK)
Tel./Fax +44 1227 781771
E-Mail Jimappleyard2510@aol.com

Hans J. Avis, MD
Departments of Vascular Medicine, and Pediatrics
Academic Medical Centre
Meibergdreef 9
NL-1105 AZ Amsterdam (The Netherlands)
Tel. +31 20 566 6612, Fax +31 20 566 9343
E-Mail h.j.avis@amc.uva.nl

Daniel Bar-Shalom
Associate professor, Department of Pharmaceutics and Analytical Chemistry
Faculty of Pharmaceutical Sciences
University of Copenhagen
Universitetsparken 2
DK-2100 Copenhagen Ø (Denmark)
Tel. +45 35336351, Fax +45 35 33 60 01
E-Mail dbs@farma.ku.dk

Daniel K. Benjamin, Jr. MD, PhD
Department of Pediatrics and Duke Clinical Research Institute
2400 Pratt Street, #7582
Durham, NC 27715 (USA)
Tel. +1 919 668 7081, Fax +1 919 681 9457

Claus Bolte, MD, MBA
Pharmaceuticals Division: Global Medical Director (Immunology)
F. Hoffmann-La Roche Ltd. - Pharmaceuticals Division
Grenzacherstr. 74, bldg 74/4 Ost/106
CH-4070 Basel (Switzerland)
Tel. +41 414101426
E-Mail clausmannyc@netscape.net

Jörg Breitkreutz
Professor for Pharmaceutical Technology
Heinrich-Heine-University Düsseldorf
Institute of Pharmaceutics and Biopharmaceutics
Universitätsstrasse 1
DE-40225 Düsseldorf (Germany)
Tel. +49 211 8110678, Fax +49 211 8114251
E-Mail joerg.breitkreutz@uni-duesseldorf.de

Francesca Ceddia, MD
Vice President and Head Global Clinical Development
GlaxoSmithKline Biologicals
Avenue Fleming, 20 (W23)
BE-1300 Wavre (Belgium)
Tel. +32 10 85 94 10, Fax +32 10 85 33 63
E-Mail francesca.x.ceddia@gskbio.com
Dr. Simon Day
Roche Products Ltd.
Hexagon Place
Shire Park
Welwyn Garden City
Hertfordshire AL7 1TW (UK)
Tel. +44 1707 366409, Fax +44 1707 383145
E-Mail simon.day@Roche.com

Luc M. De Schaepdrijver, DVM, PhD, MSc
Global Preclinical Development
Johnson & Johnson Pharmaceutical Research &
Development
Turnhoutseweg 30
BE-2340 Beerse (Belgium)
Tel. +32 14605062, Fax +32 14606138
E-Mail ldschaep@its.jnj.com

Dr. Oscar E. Della Pasqua, MD, PhD
Clinical Pharmacology & Discovery Medicine
GlaxoSmithKline
Stockley Park West
Uxbridge UB11 1BT (UK)
Tel. +44 20 8990 3646, Fax +44 20 8990 4654
E-Mail odp72514@gsk.com
and
Associate Professor
Division of Pharmacology
Leiden/Amsterdam Center for Drug Research
POBox 9502
NL-2300 RA Leiden (The Netherlands)

Patricia Fowler
Danemount Consulting
Hertford (UK)
E-Mail danemount@live.co.uk

Ian Friedland, MD
Cubist Pharmaceuticals, Inc.
65 Hayden Avenue
Lexington, MA 02421 (USA)
Tel. +1 781 860 8421, Fax +1 781 863 1331
E-Mail ian.friedland@cubist.com

Dr. Sabine Fuerst-Recktenwald, MD
Pediatrician
Translational Medicine Leader, Metabolism
F. Hoffmann-La Roche Ltd.
Building 682 / 222, Steinentorberg 8/12
CH-4070 Basel (Switzerland)
Tel. +41 61 688 41 04, Fax +41 61 688 03 55
E-Mail sabine.fuerst-recktenwald@roche.com

Prof. Steffen Gay, MD
Director, WHO Collaborating Center for Molecular
Biology and Novel Therapeutic Strategies for
Rheumatic Diseases
Department of Rheumatology
University Hospital Zürich
Gloriastrasse 25
CH-8091 Zurich (Switzerland)
E-Mail Steffen.Gay@usz.ch

Brahm Goldstein, MD, MCR
Senior Director, Translational Science
Ikaria, Inc., Clinton, NJ
Professor of Pediatrics
University of Medicine and Dentistry of New Jersey
Robert Wood Johnson Medical School
Clinton, NJ 08801 (USA)
Tel. +1 908 399 8346, Fax +1 908 219 2448
E-Mail brahm.goldstein@ikaria.com

Dr. Ulrich Granzer
Granzer Regulatory Consulting & Services
Zielstattstr. 44
DE-81379 Munich (Germany)
Tel. +49 89 780 68 98 0, Fax +49 89 780 68 98 15
E-Mail ulrich.granzer@granzer.biz
www.granzer.biz

Vincent Grek, MD
Only for Children Pharmaceuticals
35b rue Henri Barbusse
FR-75005 Paris (France)
Tel. +33 1 57 27 86 86
Fax +33 1 57 27 86 80
E-Mail vincent.grek@o4cp.com

Dr. Daniel B. Hawcutt
Clinical Lecturer in Paediatric Pharmacology
University of Liverpool
Alder Hey Hospital
Eaton Road
Liverpool L12 2AP (UK)
Tel. +44 151 282 4730, Fax +44 151 282 4719
E-Mail d.hawcutt@liverpool.ac.uk

Prof. Johannes Hebebrand, MD
Department of Child and Adolescent Psychiatry
LVR-Klinikum Essen, University of Duisburg-Essen
Virchowstr. 174
DE-45147 Essen (Germany)
Tel. +49 201 7227465
E-Mail Johannes.Hebebrand@uni-duisburg-essen.de
Dr. Suzanne Hill, B Med (Hons) PhD, Grad Dip Epi FAFPHM
Medicines, Access and Rational Use, Essential Medicines and Pharmaceutical Policies
World Health Organisation
20 avenue Appia
CH-1211 Geneva 27 (Switzerland)
Tel. +41 22 7913522, Fax +41 22 791 4167
E-Mail hills@who.int

Kalle Hoppu, MD, PhD
Medical Director
Poison Information Centre,
Helsinki University Central Hospital
P.O. Box 790 (Tukholmankatu 17)
FI-00029 HUS, Helsinki (Finland)
Tel. +358 9 471 74 788, Fax +358 9 471 74 702
E-Mail kalle.hoppu@hus.fi

Barbara A. Hutten, PhD
Department of Clinical Epidemiology, Biostatistics and Bioinformatics
Academic Medical Centre
Meibergdreef 9
NL-1105 AZ Amsterdam (The Netherlands)
E-Mail b.a.hutten@amc.uva.nl

John J.P. Kastelein, MD, PhD
Department of Vascular Medicine
Academic Medical Centre
Meibergdreef 9
NL-1105 AZ Amsterdam (The Netherlands)
Tel. +31 20 566 6612, Fax +31 20 566 9343
E-Mail j.j.kastelein@amc.uva.nl

Alastair Kent
Director
Genetic Interest Group
4D Leroy House
436 Essex Road
London N1 3QP (UK)
Tel. +44 20 7704 3141, Fax +44 20 7359 1447
E-Mail alastair@gig.org.uk
www.gig.org.uk

D.M. (Meeike) Kusters, MD
Departments of Vascular Medicine, and Pediatrics
Academic Medical Centre
Meibergdreef 9
NL-1105 AZ Amsterdam (The Netherlands)
Tel. +31 20 566 6612, Fax +31 20 566 9343
E-Mail D.M.Kusters@amc.uva.nl

Dr. Birka Lehman
Bundesinstitut für Arzneimittel und Medizinprodukte
Kurt-Georg-Kiesinger-Allee 3
DE-53175 Bonn (Germany)
Tel. +49 228 993073689, Fax +49 228 2073534
E-Mail blehmann@bfarm.de

Jennifer S. Li, MD
Department of Pediatrics and Duke Clinical Research Institute
Duke University Medical Center
Durham, NC 27710 (USA)
Tel. +1 919 668 8682, Fax +1 919 668 7058
E-Mail jennifer.li@duke.edu

Xavier Liogier d’Ardhuy, PhD
Clinical Research and Exploratory Development & Clinical Pharmacology
F. Hoffmann-La Roche Ltd.
CH-4070 Basel (Switzerland)
Tel. +41 61 688 80 95, Fax +41 61 688 60 07
E-Mail xavier.liogier_dardhuy@roche.com

Prof. Irja Lutsar, MD
University of Tartu
Ravila 19
EE-50411 Tartu (Estonia)
Tel. +372 737 4171, Fax +372 737 4172
E-Mail irja.lutsar@ut.ee

Samuel D. Maldonado, MD
Vice-President and Head
Pediatric Drug Development Center of Excellence
Johnson & Johnson PRD
920 Route 202 South
Raritan, NJ 08869 (USA)
Tel. +1 908 927 2449
E-Mail SMaldon3@prdus.jnj.com

Giorgio Massimini, MD
F. Hoffmann-La Roche Ltd.
Pharmaceuticals Division
Grenzacherstr. 124
CH-4070 Basel (Switzerland)
Tel. +41 61 688 9665, Fax +41 61 688 0501
E-Mail giorgio.massimini@roche.com
Prof. Dr. Dirk Matthys
Department of Pediatrics
Ghent University
De Pintelaan 185
BE-9000 Ghent (Belgium)
Tel. +32 9 332 35 84, Fax +32 9 332 38 75
E-Mail Dirk.Matthys@UGent.be

Dr. med. Dirk Mentzer
Facharzt für Kinderheilkunde
Referatsleiter Arzneimittelsicherheit
Head of Pharmacovigilance Unit
Paul-Ehrlich-Institut
Paul Ehrlich Str. 51-59
DE-63225 Langen (Germany)
Tel. +49 6103 771011, E-Mail mendi@pei.de

Simon Nadel, MD, FRCP
Consultant and Honorary Reader in Paediatric Intensive Care
Imperial College Health Care NHS Trust
St. Mary’s Campus
Prased Street
London W2 1NY (UK)
Tel. +44 2078866077, Fax +44 2078866958
E-Mail s.nadel@imperial.ac.uk

Hidefumi Nakamura, MD, PhD
National Center for Child Health and Development
2-10-1 Oookura, Setagaya-ku
Tokyo 157-8535 (Japan)
Tel. +81 3 3416 0181, ext. 7063 or 5373,
Fax +81 3 3417 5691
E-Mail nakamura-hd@ncchd.go.jp

Robert M. Nelson, MD, PhD
Pediatric Ethicist, Office of Pediatric Therapeutics
Office of the Commissioner, United States Food and Drug Administration
Silver Spring, MD 20993 (USA)
Tel. +1 301 827 1522, Fax +1 301 827 1017
E-Mail Robert.Nelson@fda.hhs.gov

Prof. Tony Nunn
Clinical Director of Pharmacy and
MCRN Associate Director
Alder Hey Hospital
Eaton Road
Liverpool L12 2AP (UK)
Tel. +44 151 252 5314, Fax +44 151 252 5675
E-Mail Tony.Nunn@alderhey.nhs.uk

Dr. Cor Oosterwijk
Vice-President EGAN, Director VSOP
Koninginnelaan 23
NL-3762 DA Soest (The Netherlands)
Tel. +31 35 603 4040, Fax +31 35 602 7440
E-Mail coosterwijk@vsop.nl
www.egan.eu, www.vsop.nl

Masahiro Ozaki
Associate Director, Regulatory Affairs
UCB Japan Co., Ltd.
2-2 Kanda-Surugadai, Chiyoda-ku
Tokyo 101-0062 (Japan)
Tel. +81 3 5283 1733, Fax +81 3 5283 1890
E-Mail masahiro.ozaki@ucb.com
www.ucb.com

Audino Podda, MD
Novartis Vaccines Institute for Global Health
Clinical Development & Regulatory
Via Fiorentina, 1
IT-53100 Siena (Italy)
Tel. +39 0577 243496, Fax +39 0577 243540
E-Mail audino.podda@novartis.com

Ysbrand Poortman
Vice-President World Alliance of Organizations for Prevention and Treatment of Genetic and Congenital Conditions (WAO)
Helios 130, Gerstkamp
NL-2592 CV The Hague (The Netherlands)
Tel. +31 35 683 1920, Fax +31 35 602 7440
E-Mail y.poortman@vsop.nl

Ronald J. Portman, MD
Group Director
Pediatric Drug Development Program/CV-metabolics
Bristol Myers Squibb
Rte 206 and Provinceline Road
Princeton, NJ 08543 (USA)
Tel. +1 6092525758, Fax +1 6092526701
E-Mail Ronald.Portman@bms.com

Prof. Kathy Pritchard-Jones, MD
The Institute of Cancer Research and
The Royal Mardsen Hospital
Downs Road
Sutton
Surrey SM2 5PT (UK)
Tel. +44 20 8661 3498, Fax +44 20 8661 3617
E-Mail kathy.pritchard-jones@icr.ac.uk