Amino Acid Substitutions in Matrix, Fusion and Hemagglutinin Proteins of Wild Measles Virus for Adaptation to Vero Cells

Ji Yi Xina, b, Toshiaki Iharac, Katsuhiro Komased, Tetsuo Nakayamab

aNational Laboratory for Measles, National Institute for Viral Disease Control and Prevention, Beijing, China; bLaboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, cDepartment of Pediatrics, National Mie Hospital, Tsu, and dLaboratory of Measles Viruses, Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan

\textbf{Key Words} \\
CD46 \cdot Fusion protein \cdot Hemagglutinin protein \cdot Matrix protein \cdot Measles virus \cdot SLAM

\textbf{Abstract} \\
\textbf{Background:} Wild-type measles virus (MV) is isolated in B95a but not in Vero cells. Through an adaptation process of wild-type MV to Vero cells, several amino acid substitutions were reported. \textbf{Methods:} Six strains were adapted to Vero cells and membrane (M), fusion (F) and hemagglutinin (H) genes were sequenced. Cell fusion was assessed and recombinant MVs were constructed, having wild-type H or M gene with or without mutations. \textbf{Results:} No F gene substitution was noted. Amino-acid substitutions at positions 481 from Asn to Tyr (N481Y) and 546 from Ser to Gly (S546G) were observed in the H protein. Glu at position 89 of the M protein was substituted for Gly (E89G) and two mutations were noted at positions 62 (S62R) and 83 (S83P) in M protein. Recombinant viruses with mutation(s) detected in Vero-adapted strains induced a cytopathic effect and grew well in Vero cells, but those with the wild type did not. Recombinant viruses with mutation(s) demonstrated lower viral growth in B95a cells. \textbf{Conclusions:} Substitutions of E89G, S62R and S83P of the M protein were newly observed through adaptation to Vero cells, besides the mutations described in previous reports, with varying adaptation for each strain.

Copyright © 2011 S. Karger AG, Basel

Karger \hfill \footnotesize © 2011 S. Karger AG, Basel 0300–5526/11/0544–0217$38.00/0

bLaboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University Shirokane 5-9-1, Minato-ku, Tokyo 108-8641 (Japan)

Tetsuo Nakayama, MD \\
Tel. +81 3 5791 6269, Fax +81 3 5791 6130, E-Mail tetsuo-n@lisci.kitasato-u.ac.jp
Edmonston strain and relevant vaccine strains were found to use both SLAM and CD46 as receptors and circulating wild-type strains utilize SLAM as a receptor, but not CD46 [9, 10].

Several amino-acid changes in H, M, L and P proteins and/or accessory V and C proteins were responsible for attenuation through adaptation to Vero cells. Some authors reported that the majority of MV strains using CD46 as a receptor have tyrosine at position 481, whereas wild-type strains have asparagine at this position [11–17]. When the wild-type MV strains became adapted to grow in Vero cells, the substitution at position 481 of H protein from asparagine to tyrosine (N481Y) was often observed after several passages [16, 18]. In some Vero cell-adapted strains, a substitution at position 546 of the H protein from serine to glycine (S546G) was observed instead of the N481Y substitution [19–22]. A single substitution of N481Y or S546G enabled the H protein of wild-type MV strains to utilize CD46, without influencing their ability to use SLAM. In addition, two amino-acid differences were observed in Edmonston-derived strains in comparison with wild-type strains at positions 64 and 89 of M protein (P64S and E89K), which allowed an interaction of M protein with the cytoplasmic tail of H protein, thereby enhancing cell fusion and assembly of infectious particles in Vero cells [23–25].

In this report, amino-acid substitutions were investigated in M, F and H proteins of Vero-adapted strains from six wild-type MV strains isolated in B95a cells, in comparison with the original wild types. Mutations of N481Y or S546G of the H protein region were observed as previously reported. In addition, mutations in S62R, S83P and E89G of the M protein region were noted, being different from the mutations described in previous reports. Recombinant MV strains with mutations in the H and M genes were constructed to conduct a functional analysis of the mutations.

Materials and Methods

Cells and Viruses
Six strains of the wild type were used in this study.
- MVi/Tokyo.JPN/17.07-AN/B4
- MVi/Mie.JPN/19.07-OY/B4, MVi/Mie.JPN/23.07-TY/B3, MVi/Mie.JPN/41.07-MA/B3 and MVi/Mie.JPN/03.08-KU/B4 were genotype D5 isolated in 2007/2008 outbreaks in Japan, using B95a cells after three or four passages. MVi/Aichi.JPN/44.06/B3 was genotype D9 [26]. Through several passages in Vero cells, eight Vero-adapted strains were obtained. AN-V4 was obtained after four passages of MVi/Tokyo.JPN/17.07-AN/B4 in Vero cells. OY-V4 and OY-V22 were obtained after four and 22 passages of MVi/Mie.JPN/19.07-OY/B4 in Vero cells, respectively. TY-V4, TY-V22, MA-V15, KU-V4 and D9-V4 strains were obtained after passages of respective strains in Vero cells. MVAT7 pol., non-replicative vaccinia virus expressing T7 RNA polymerase (a kind gift from Dr. G. Sutter), was used for fusion analysis and the recovery of infectious viruses.

B95a cells were maintained in RPMI 1640 medium supplemented with 10% fetal calf serum (FCS), and Vero cells in MEM supplemented with 5% FCS. 293 T cells were cultured in MEM supplemented with 10% FCS.

Construction of F and H Expression Plasmids and Fusion Experiment
The H protein expression plasmids were constructed from Vero-adapted strains (AN-V4, OY-V4, OY-V22, TY-V22, MA-V15, KU-V4 and D9-V4 strains) and their original wild-type isolates and AIK-C strain. The H gene was amplified by RT-PCR using the set of primers H-ATG (5'-GTTGGAATTCTGTCCACCAGAAGACGCGGA-3') and H-TAG (5'-AATGGCGCGCGCTATCGGGAAGATGGTCCA-3'), containing restriction enzyme sites of EcoRI and NotI (underlined). The amplified DNA fragments were cloned into multicloning sites located downstream of the T7 promoter of pBluescript SK II–. Several clones were sequenced to analyze the frequency of mutations. Constructed H expression plasmid (0.2 μg) was co-transfected together with the AIK-C F expression plasmid into a monolayer of B95a or Vero cells infected with recombinant vaccinia virus, MVAT7 pol., using Mirus Superfect III (Invitrogen Life Technologies, Carlsbad, Calif., USA) [27]. Cells were fixed with cooled acetone and further subjected to indirect immunofluorescent (IF) staining.

Construction of Recombinant MV Strains with Mutations
The infectious recombinant MV strains were recovered from the infectious cDNA clone based on the AIK-C measles vaccine strain, expressing wild-type measles H protein cloned from the wild-type MV [27, 28], and the recombinant infectious cDNA constructions are shown in figure 1. Briefly, full-length cDNA of the AIK-C strain was divided into two parts: the first half consisted of AIK-C cDNA from the leader to the PacI site at nucleotide position 7238 of the AIK-C genome, and the second half of the AIK-C cDNA consisted of H and L regions from the 7239 PacI site to the trailer sequence. The AsoI site (GGCGGCGC) was artificially introduced by adding a GGCGGCGC sequence upstream of the genome position 3433 in the P/M junction, and R1 and R2 sequences were added. The green fluorescent protein (GFP) sequence was inserted using Ncol and NotI restriction enzyme sites in accordance with the rule of six of the genome length [29, 30], designated as pMVAIK P/M-GFP. The H gene of the wild-type or Vero-adapted strains was cloned at Nhel (genome position 7426) and PvuII (genome position 9082) of the first half of the AIK-C cDNA and combined with the first half of the cDNA. The M gene of the wild-type or Vero-adapted strains was cloned at BglII (genome position 3445) and BanIII (genome position 4312) sites of the first half of the AIK-C cDNA clone and combined with the second half to construct full-length cDNA.

For the recovery of the recombinant MV, 293 T cells were infected with MVAT7 pol., and then 0.5 μg of pAIK-N, 0.25 μg of pAIK-P, 0.1 μg of pAIK-L and 1.5 μg of full-length recombinant cDNA, using Mirus Superfect III (Invitrogen Life Technologies) modified from previous reports [27, 28]. After 2 days of culture,
293 T cells were co-cultured with B95a cells. Infectious virus particles were rescued through two blind passages in B95a cells at 32.5 ° in 5% CO₂.

Sequence Analysis

The M, F and H genes of the wild-type isolates and Vero-adapted strains were amplified and cloned using NheI and PvuII restriction enzyme sites. The M gene was inserted at BglII and BamHI restriction enzyme sites. The AscI site (GGCGCGCC) was artificially introduced by adding a GGCGCG sequence upstream of the genome position 3433 in the P/M junction, and R1 and R2 sequences were added. The GFP sequence was inserted at the P/M junction.

Indirect IF Staining and GFP Expression

B95a or Vero cells were cultured in 8-well LabTek Glass slides (Nalge Nunc International, Rochester, N.Y., USA) and infected with recombinant MV strains. GFP expression was confirmed and cells were fixed with cooled acetone and further subjected to indirect IF staining using 1:100 dilution of monoclonal antibody against measles H protein (kindly supplied by Dr. T. A. Sato, National Institutes for Infectious Diseases) and that against N protein (Chemicon, Temecula, Calif., USA). They were stained with 1:100 dilution of anti-mouse IgG monoclonal antibody labeled with FITC (Sigma-Aldrich, St. Louis, Mo., USA).

Virus Growth and GFP Expression

B95a or Vero cells were infected with recombinant MV strains at MOI = 0.01 and culture supernatant was obtained on days 1, 3, 5 and 7 of culture. Virus infectivity was calculated by the Reed-Muench method using B95a cells, and GFP expression was monitored with a microplate fluorescent reader, FLx 800 (Bio-Tek Instruments, Winooski, Vt., USA).
Results

Amino-Acid Substitutions of MV for Adaptation to Vero Cells

Eight Vero-adapted strains belonging to the D5 and D9 genotypes were obtained after 4–22 passages: AN-V4, OY-V4, OY-V22, TY-V4, TY-V22, MA-V15, and KU-V4 from five wild-type D5 strains and D9-V4 after four passages of wild-type D9 strain. Original wild-type strains did not show any cell fusion in Vero cells and eight Vero-adapted strains were obtained, demonstrating syncytia formation. No mutation was noted in the F gene in the strains studied and amino-acid substitutions in the M and H proteins are shown in Table 1. Regarding the H gene of the Vero-adapted strains, an amino-acid substitution at position 481 from Asn to Tyr (N481Y) was noted in OY-V4 and MA-V15. An amino-acid substitution at position 546 from Ser to Gly (S546G) was observed in AN-V4, TY-V22, and KU-V4. OY-V22 showed substitutions at positions 481 and 546. No mutation was observed for TY-V4 and D9-V4. With respect to the M gene, substitutions were observed at position 62 of the M protein from Ser to Arg (S62R) and at position 83 from Ser to Pro (S83P) of OY-V22, and at position 89 from Glu to Gly (E89G) of D9-V4. The mutation site(s) for adaptation to Vero cells was different from strain to strain.

For each Vero-adapted MV strain, H and M expression plasmids were constructed, and the results of sequence analyses are shown in Table 2. Among ten H expression plasmids derived from the OY-V4 strain, four had N481Y and the remaining six were wild type. Among 12 H expression plasmids of OY-V22, three had N481Y substitution, six had S546G, one had both N481Y and S546G, and the remaining two were the original wild type. Six H expression plasmids of MA-V15 showed N481Y substitution. Six of seven plasmids derived from

<table>
<thead>
<tr>
<th>MV strains</th>
<th>Genotype</th>
<th>Passage in Vero cells</th>
<th>H original</th>
<th>M original</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVi/Tokyo.JPN/17.07-AN/B4</td>
<td>D5</td>
<td>AN-V4</td>
<td>^1 Gly</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/19.07-OY/B4</td>
<td>D5</td>
<td>OY-V4</td>
<td>Tyr – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/19.07-OY/B4</td>
<td>D5</td>
<td>OY-V22</td>
<td>Tyr Gly</td>
<td>Arg Pro –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/23.07-TY/B3</td>
<td>D5</td>
<td>TY-V4</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/23.07-TY/B3</td>
<td>D5</td>
<td>TY-V22</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/41.07-MA/B3</td>
<td>D5</td>
<td>MA-V15</td>
<td>Tyr – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/03.08-KU/B4</td>
<td>D5</td>
<td>KU-V4</td>
<td>– Gly</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Aichi.JPN/44.06/B3</td>
<td>D9</td>
<td>D9-V4</td>
<td>– – – –</td>
<td>– – Gly</td>
</tr>
</tbody>
</table>

AN-V4 was obtained after four passages of MV/Tokyo.JPN/17.07-AN/B4 in Vero cells. H original/M original = Amino acids of the original strain.

^1 No amino-acid substitution after adaptation to Vero cells.

Table 1. Amino-acid substitutions of wild-type isolates after adaptation to Vero cells

<table>
<thead>
<tr>
<th>MV strains</th>
<th>Genotype</th>
<th>Passage in Vero cells</th>
<th>H original</th>
<th>M original</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVi/Tokyo.JPN/17.07-AN/B4</td>
<td>D5</td>
<td>AN-V4</td>
<td>^1 Gly</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/19.07-OY/B4</td>
<td>D5</td>
<td>OY-V4</td>
<td>Tyr – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/19.07-OY/B4</td>
<td>D5</td>
<td>OY-V22</td>
<td>Tyr Gly</td>
<td>Arg Pro –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/23.07-TY/B3</td>
<td>D5</td>
<td>TY-V4</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/23.07-TY/B3</td>
<td>D5</td>
<td>TY-V22</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/41.07-MA/B3</td>
<td>D5</td>
<td>MA-V15</td>
<td>Tyr – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Mie.JPN/03.08-KU/B4</td>
<td>D5</td>
<td>KU-V4</td>
<td>– Gly</td>
<td>– – – –</td>
</tr>
<tr>
<td>MVi/Aichi.JPN/44.06/B3</td>
<td>D9</td>
<td>D9-V4</td>
<td>– – – –</td>
<td>– – Gly</td>
</tr>
</tbody>
</table>

Table 2. Sequence diversity of M and H protein-encoding plasmids derived from Vero-adapted virus strains

<table>
<thead>
<tr>
<th>H gene</th>
<th>M gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>N481Y</td>
<td>S62R</td>
</tr>
<tr>
<td>OY-V4</td>
<td>4</td>
</tr>
<tr>
<td>OY-V22</td>
<td>3</td>
</tr>
<tr>
<td>TY-V22</td>
<td>0</td>
</tr>
<tr>
<td>MA-V15</td>
<td>6</td>
</tr>
<tr>
<td>KU-V4</td>
<td>0</td>
</tr>
<tr>
<td>D9-V4</td>
<td>4</td>
</tr>
</tbody>
</table>
TY-V22 and all seven from KU-V4 showed S546G substitution. For the M gene, substitutions of S62R and S83P were observed in OY-V22 and that of E89G in D9-V4. Among 24 M gene clones derived from OY-V22, there were two clones with S62R and the remaining 22 had both S62R and S83P substitutions. As for the D9-V4 strain, four plasmids out of six M gene clones showed E89G substitution.

Expression Experiments Involving F and H Proteins

Through cloning experiments, the H protein expression plasmid was constructed from the original MVi/Mie.JPN/19.07-OY strain (pOY-H), and three expression plasmids with mutation(s) derived from OY-V22 (Vero-adapted strain of MVi/Mie.JPN/19.07-OY) were constructed: pOY-H N481Y (with an amino-acid substitution at position 481 of H protein), pOY-H S546G (with an amino-acid substitution at position 546) and pOY-H 481/546 (with two substitutions). pAIK-F was used as an F expression partner constructed from the AIK-C vaccine strain. The H expression plasmids were co-transfected with pAIK-F as the F expression partner in B95a or Vero cells, and the results of indirect IF staining are shown in figure 2. They induced a similar level of cell fusion in B95a cells, but the original wild-type pOY-H did not induce cell fusion in Vero cells (panel 8). The plasmids with an amino-acid substitution of N481Y (pOY-H N481Y) or S546G (pOY-H S546G) induced cell fusion in both B95a and Vero cells, and plasmid with both N481Y and S546G substitutions (pOY-H 481/546) induced more prominent cell fusion in Vero cells (panel 7).

Construction of Recombinant MV Strains with H Mutations

Recombinant cDNAs having wild-type original H gene of MVi/Mie.JPN/19.07-OY and mutated H gene from the Vero-adapted strains (OY-V22) were constructed based upon AIK-C cDNA, and infectious viruses were recovered: rMV-OY H without amino-acid substitution, rMV-OY H N481Y with amino-acid substitution of N481Y, rMV-OY H S546G with amino-acid substitution of S546G and rMV-OY H 481/546 with both substitutions. These recombinant MV strains were designed to express GFP, and the expression of GFP and IF staining against N protein are shown in figure 3. rMV-OY H did not show cell fusion in Vero cells similar to the original wild-type MVi/Mie.JPN/19.07-OY (panels 13, 18), but the Vero-adapted strain OY-V22 induced cell fusion in Vero as well as B95a cells (panels 5, 14). rMV-OY H N481Y and rMV-OY H S546G induced cell fusion in Vero cells to a
similar extent, and rMV-OY H 481/546 led to slightly more extensive fusion in Vero cells.

Construction of Recombinant MV Strains with M Gene Mutations of OY-V22

Two amino-acid substitutions were noted in the M gene of the OY-V22 strains, S62R and S83P. The AIK-C vaccine strain has Tyr (Y) at position 481 of the H region, and mutation was introduced to generate Asn (N) at 481 (rMVAIK H481N). The M gene of the AIK-C was replaced by that of OY-V22 in the pMVAIK H481N cDNA, and two recombinant MV strains were recovered: rMVAIK H481N/M S62R and rMVAIK H481N/M 62/83. These M gene mutations were introduced into the cDNA of rMV-OY H and rMV-OY H/M S62R and rMV-OY H/M 62/83 were recovered. GFP expression and expression of measles N protein are shown in figure 4. rMVAIK H481N did not induce cell fusion in Vero cells (panels 11, 16), but rMVAIK H481N/M S62R and rMVAIK H481N/M 62/83 strains induced cell fusion (panels 12, 13, 17, 18). rMV-OY H/M S62R and rMV-OY H/M 62/83 strains induced cell fusion in Vero cells (panels 14, 15, 19, 20).

Virus Growth of Recombinant MV Strains with H and M Gene Mutations

All recombinant MV strains were designed to express GFP and virus growth was monitored by GFP expression, measured as fluorescence units (FU). The cell-free infectious virus titer was examined on days 1, 3, 5 and 7 after infection. The results of virus growth of recombinant MV strains with mutations in the H gene are shown in figure 5. Baseline GFP expression was <400 FU. rMV-OY H (Hwt) failed to produce syncytia in Vero cells without GFP expression, similar to the fusion experiment using...
Adaptation of Wild Type Measles Virus to Vero Cells

The H expression plasmids, and no infectious virus was observed in the supernatants. rMV-OY H 481/546 (H481/546) grew better on day 5 or 7 after infection with a high infectious titer of 10^5 TCD$_{50}$ and high GFP expression over 2,500 FU in Vero cells, and induced more marked fusion in Vero cells than in the other recombinant MV strains with N481Y or S546G substitution. rMV-OY H S546G (H546) induced higher GFP expression than rMV-OY H N481Y (H481), but there were no significant differences in the production of infectious virus particles. In B95a cells, four recombinant MV strains demonstrated similar infectious virus production, but the rMV-OY H S546G strain led to a lower expression of GFP than rMV-OY H, rMV-OY H481N and rMV-OY H 481/546 (fig. 5).

GFP expression and the production of infectious virus in Vero and B95a cells infected with recombinant MV strains with M gene mutation(s) are shown in figure 6. M gene mutation(s) was introduced into rMVAIK-H481N or rMV-OY-H. rMV OY-H (Hwt) did not express GFP and no infectious virus particle was produced in Vero cells. rMV-OY H/M S62R (M62/Hwt) and rMV-OY H/M 62/83 (M62/83/Hwt) induced GFP expression, and an infectious virus titer of $10^{2.0–3.0}$ TCD$_{50}$ was obtained in the supernatants on day 7 of Vero cell culture. rMV-OY H induced extensive cell fusion in B95a cells with higher level of GFP expression and particle formation, but four other recombinant MV strains with M gene mutation(s) induced lower GFP expression with a lower production of infectious particles. Although recombinant MV strains with mutated M protein produced cell fusion in Vero cells, they induced lower cell fusion with lower numbers of fusion foci in comparison with those produced in B95a cells.

Fig. 4. GFP expression and IF staining of B95a and Vero cells infected with recombinant MV strains with M protein substitutions. The M gene of AIK-C was replaced with that obtained from OY-V22 with mutation of S62R, S62R/S83P, and the H gene was also replaced by OY-H wild-type (rMV-OY H/M S62R, rMV-OY H/M 62/83). The M gene mutations were also introduced into rMVAIK H481N, rMVAIK H481N/M S62R and rMVAIK H481N/M 62/83. The results of GFP expression and IF using a monoclonal antibody against measles N protein are shown.
Recombinant MV Strains Derived from D9 Strain

D9-V4 was a mixture of M gene mutation. Four clones showed mutation at position 89 of the M gene from Glu to Gly, and the remaining two clones showed no mutation. The H and M genes of AIK-C cDNA were replaced with those amplified from the D9-V4 strain. rMV-D9 H/M has the original wild-type H and M genes, and rMV-D9 H/M E89G has wild-type H gene and E89G mutation of the M gene, similar to the D9-V4 strain. The results of cell fusion, GFP expression and infectivity in culture fluids are shown in figure 7. Two recombinant MV strains showed similar cell fusion in B95a cells, with similar infectious virus production. Whereas rMV-D9 H/M E89G induced cell fusion and produced infectious virus particles (10^{3.1} TCD_{50}/ml) in Vero cells, rMV-D9 H/M did not induce cell fusion and showed no virus growth in Vero cells.

Discussion

MV induces extensive syncytium formation with cell fusion, and the appearance of a syncytium is a positive indicator of virus isolation. Binding of the H protein to the receptor induces the conformational changes of H and F proteins required for the protrusion of the fusion domain into lipid bilayers of the cell membrane [3–5]. At present, two MV receptors have been identified: CD46 and SLAM (CD150). CD46 is expressed widely on the surface of epithelial cells, including Vero cells, whereas CD150 is a lymphocyte-stimulating factor expressed on the surface of lymphoreticular cells [10, 31]. In the past, MV was isolated after three or more blind passages in Vero cells, and the isolation rate was low. Otherwise, current wild-type MV strains were isolated in B95a cells. The
Adaptation of Wild Type Measles Virus to Vero Cells

adaptation of the current wild MV to Vero cells led to amino-acid substitution(s) in the H gene that increased the binding capacity of the measles H protein to CD46 [19]. Lecouturier et al. [12] reported that substitutions of two amino-acid positions of 451 and 481 in H protein of the Halle strain abrogated the fusion inducibility of the functional domain(s) of the measles H protein. Hsu et al. [14] reported that a single amino-acid change at position 481 determined the ability of H protein to bind CD46. Xie et al. [15] reported that Asn at position H481 of the wild-type expression plasmid was replaced by various amino acids, and the mutant plasmid with Tyr, similar to the Edmonston strain, induced cell fusion, but this substitution did not cause the down-regulation of CD46 expression, unlike the Edmonston strain. Thus, Tyr at position 481 was indispensable for measles H protein to interact with CD46, similar to the other reports [16, 21]. A single substitution of N481Y of the wild H protein was not sufficient to use CD46, suggesting that further substitutions were required for efficient virus growth in Vero cells [22].

From the comparison of the H gene of the Edmonston and current circulating strains, three substitutions (N309I and E492G, plus N416D or T446S) were necessary for efficient virus growth in Vero cells [32]. Li and Qi [20] examined the amino-acid substitutions of MV H protein when three hemadsorption-negative strains were passaged >20 times in Vero cells. They reported that amino-acid substitution at position 546 of the measles H protein from Ser to Gly was critical for hemadsorption and CD46 binding besides the amino-acid change at position 481. In the three-dimensional surface representation of the structural model, three of these residues (D505, D507 and
R533) align along the rim on one side of the cavity on the top surface of the measles H globular head, and form the basis of a single continuous site that overlaps with the 546-548-549 CD46 binding site. Mutations at position 481 or 546 induce conformational changes in the measles hemagglutinin globular head and influence the affinity for CD46 binding [33]. The MV H protein three-dimensional approach suggested that the SLAM- and CD46-relevant residues are located in contiguous areas in propeller β sheets 5 and 4, respectively, and several CD46-relevant amino acids may be shielded from direct receptor contact [34–36]. Using the Edmonston H protein, the association rate for SLAM binding to H protein was very low; about 20 times lower than CD46. However, SLAM bound to H protein more tightly than CD46, as revealed by a 5-fold lower dissociation rate [37].

The Vero-adapted MV strains showed several amino-acid changes in the other genes: two in the P, V and C proteins, three in the H gene (Ala H14 Gly, Leu H423 Pro and Ser H546 Gly) and two in the L gene [13]. Only two nucleotide differences were reported at 2331 genome position of P/V/C and at the 3628 genome position (amino acid position 64 of M protein), and none in the H gene between the MV genome isolated in B95a cells and that isolated in Vero cells from the same patient [38]. Through comparative studies of the M gene sequence of wild-type and Edmonston strains, substitutions of P64S and E89K from wild-type M protein were reported to be responsible for the fusion inducibility and efficient virus growth in Vero cells [23]. These two substitutions (P64S and E89K) allowed the interaction of the M protein with the cytoplasmic tail of H protein, thereby enhancing cell fusion and the assembly of infectious particles in Vero cells [24]. M protein also had binding activity to the cytoplasmic domain of H protein together with F protein and ribonucleoprotein complex, and was transported to the mem-

Fig. 7. Characteristics of recombinant MV strains with a mutation in M protein observed in the D9-V4 Vero-adapted strain. The M and H genes of AIK-C were replaced with those of MV/Aichi.JPN/44.06 (rMV-D9 H/M), and the mutated M gene was introduced (rMV-D9 H/M E89G). GFP expression is shown in the upper panels. Vero and B95a cells were infected, and GFP expression (■□) and virus infectivity (--- - - -) were monitored. / ■ = rMV-D9 H/M; - - - - / □ = rMV-D9 H/M E89G.
brane raft fraction [25, 39, 40]. In this report, no substitution was noted in the F protein for adaptation to Vero cells but substitutions were reported at positions 439 and 464 of the F protein, as well as those in the N, P/V/C, H and L proteins after adaptation to Vero cells [41].

In this report, cell fusion was observed after four passages of MVi/Mie.JPN/3.07-TY/B3 (TY-4 strain) in Vero cells but TY-4 had no amino-acid substitution in the M, F and H proteins. There was a possibility of mutation(s) in the P and/or L genes and, after 22 passages, substitution of H546G was detected. Amino-acid substitutions for adaptation to Vero cells were different from strain to strain. All D5 genotype strains showed a substitution at position 481 or 546 of the H protein region at an early stage of passage. These were mutated through the adaptation process, and no substitution except for those at these positions was observed on direct sequencing analysis. Thus, the substitutions of N481Y or S546G were essential for adaptation to Vero cells, and the other regions were not changeable. OY-V4 showed a mixed population of N481Y and original wild-type clones, whereas OY-V22 was a mixture of the N481Y substitution, S546G, substitutions of both N481Y and S546G, and the original sequence. Through the results of expression experiments involving H plasmids and GFP expression of recombinant MV strains, rMV-OY H 481/546 induced more extensive cell fusion in Vero cells than MV strains with either of the substitutions. Double mutants were predicted to use CD46 more efficiently, leading to efficient infectious virus production and growth in Vero cells.

Further repeated passages in Vero cells accumulated mutations in the M gene in addition to the H gene. Two strains adapted to Vero cells showed substitutions in M protein. Substitution of E89G was observed in D9-V4, and those of S62R and S83P in OY-V22. rMV-OY H/M S62R and rMV-OY H/M 62/83 strains induced cell fusion in Vero cells. These recombinant MV strains decreased virus growth and particle formation in B95a cells and the single substitution of S62R was sufficient. These positions were different from those in previous reports, demonstrating the fusogenicity of combined substitutions of P64S and E89K in Vero cells [23, 24, 32]. The backbone of our reverse genetics is the AIK-C vaccine strain and rMV H481N and rMV-OY H have K at position 89 of M protein, but these two strains did not induce cell fusion without infectious virus production. Thus, the single mutation of E89K would not be a critical region for interaction between M and H proteins for efficient virus growth in Vero cells. Substitution of E89G of the M protein was observed in D9-V4. rMV-D9 H/M (E at position 89 of M protein) did not induce cell fusion, with no virus growth, but GFP was demonstrated in cells without fusion. rMV-D9 H/M E89G induced a small fusion with a low level of infectious virus production, even though it had wild-type H protein. This may suggest the presence of another unidentified receptor for MV and, recently, the possibility of a molecule related to tight junctions on the basolateral sides of epithelial cells was reported [42, 43].

Adaptation would occur in a different manner depending on the strains or experimental condition. Three strains showed mutations in the H gene within four passages, and repeated passages added additional mutations to the M and H genes. One strain of D9 showed a substitution in the M protein, even without H protein substitution at N481Y or S546G which enables the virus to enter cells efficiently. Thus, we supposed that the amino acids at positions 481 and 546 of H protein are critical for the different tropisms based on the results of expression experiments. From the results of recombinant MV strains with M protein mutations, substitution in the M protein promoted efficient MV growth and particle formation in Vero cells, and would influence efficient receptor usage of the wild-type H protein to induce cell fusion irrespective of H gene mutation.

References

20 Li L, Qi Y: A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for hemadsorption and CD46 binding. Arch Virol 2002;147:775–786.

22 Seki F, Takeda M, Minagawa H, Yanagi Y: Recombinant wild-type measles virus containing a single N481Y substitution in its haemagglutinin cannot use receptor CD46 as efficiently as that having the haemagglutinin of the Edmonston laboratory strain. J Gen Virol 2006;87:1643–1648.

Xin/Ibara/Komase/Nakayama

Intervirolology 2011;54:217–228