Interferon Alone or Combined with Ribavirin for Acute Prolonged Infection with Hepatitis C Virus in Chimpanzees

Tetsushi Tomoguri a Keiko Katayama b Junko Tanaka b Hisao Yugi d
Masaaki Mizui c Yuzo Miyakawa e Hiroshi Yoshizawa b

a Sanwa Kagaku Kenkyusho Co., Ltd., Kumamoto, b Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical Sciences, Hiroshima University, and c Japanese Red Cross Hiroshima Blood Center, Hiroshima, d Division of Nucleic Acid Amplification Test (NAT), Japanese Red Cross Tokyo Blood Center, and e Miyakawa Memorial Research Foundation, Tokyo, Japan

Key Words
Chimpanzee · Hepatitis C virus · Interferon · Ribavirin

Abstract
Infection with hepatitis C virus (HCV) persisted for longer than 29 weeks in 2 chimpanzees after they had been inoculated with it experimentally. One of them (C-210) received short-term subcutaneous interferon-α (IFN-α) 6 million units (MU) daily for 7 days at week 29. He cleared HCV RNA from the serum and remained negative for it during 25 weeks after the withdrawal of IFN. The other (C-224) did not respond to 2 courses of a short-term IFN monotherapy at weeks 20 and 23. Twelve weeks thereafter, he received IFN-α 3 MU daily for 2 weeks and then 3 times a week for 14 weeks combined with oral ribavirin 600 mg daily during 16 weeks. HCV RNA disappeared from the serum and stayed negative until the last follow-up 24 weeks after the completion of combination therapy.

Due to a very narrow species-specificity of hepatitis C virus (HCV), chimpanzees remain the only animal that can be infected with it. Once they served as the sole means of identifying the infection with HCV that had been referred to as non-A, non-B hepatitis virus until its discovery in 1989 [1]. HCV infection can persist in chimps at rates ranging from 30 to 60%, depending on the age and gender as well as viral strains in inocula they have received [2, 3]; the persistence rate is comparable to that of 55–85% in humans [4, 5]. The long-term outcome of chimpanzees infected with HCV is not known, nor have there been any attempts to treat them with either interferon (IFN) alone or IFN in combination with ribavirin.

Two chimps with acute prolonged HCV infection received antiviral treatment. They were chimps No. 210 (male, 14 years old and weighing 62.8 kg) and No. 224 (male, 14 years old and weighing 59.1 kg). Both of them were kept in individual cages and received humane care, in accordance with all relevant requirements for the use of primates in an approved facility. Chimp No. 210 participated in the experimental transmission study for determining the minimum infectious dose of HCV [6]. He received 1 ml of fresh-frozen plasma from a donor in the window period of HCV infection with mixed genotypes (1b plus 2a) containing \(7 \times 10^6\) copies/ml of HCV RNA. Chimp No. 224 was inoculated with 1 ml of fresh-frozen plasma from another donor in the window period of HCV infection with genotype 1b containing \(8.4 \times 10^6\)
copies/ml of HCV RNA; his preacute plasma has been included in the panel for standardization of polymerase chain reaction (PCR). They both received IFN therapy for evaluating the efficacy in treatment of acute prolonged HCV infection. The study design was approved by the Committee of Ethics for Handling of Primates in the institutions.

The 2 chimpanzees were bled under anesthesia with ketamine hydrochloride weekly for the initial 21–24 weeks, and then at intervals until the completion of this study. HCV RNA was determined qualitatively by Amplinat MPX. Anti-HCV was determined by passive hemagglutination. Fluctuating levels of ALT and AST in the serum are shown below.

Figure 1 illustrates the clinical course of chimp No. 210 who had been inoculated with 7.0×10^6 copies/ml of HCV mixed genotypes (1b and 2a) and developed viremia during the first 24 weeks. He developed anti-HCV, 11 weeks after inoculation, along with sharp increases in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Anti-HCV increased, reached 2^N hemagglutination titers and remained positive through the observation period of 55 weeks. Upon the confirmation of HCV RNA 29 weeks after inoculation, he received IFN-α 6 MU daily for 1 week. HCV RNA was not detectable by qualitative assay in his sera at the next week.

Figure 2. Clinical course of chimpanzee No. 224 (C-224). The duration of 2 courses of IFN monotherapy (1 week each) as well as IFN (daily for 2 weeks and then 3 times a week for 14 weeks) combined with ribavirin (16 weeks) is indicated at the top.
Interferon for Hepatitis C in Chimpanzees

whereupon the IFN monotherapy was discontinued. He stayed negative for HCV RNA until the last observation 25 weeks after the withdrawal of IFN monotherapy.

Figure 2 depicts the clinical course of chimp No. 224 who was inoculated with 8.4 × 10^6 copies of HCV of genotype 1b. HCV RNA was detected in his serum at week 1. HCV RNA stayed positive through 20 weeks, and he was considered to have developed persistent infection. IFN-α 6 MU was given daily for 7 days since the 21st week. Because HCV RNA was positive at the next examination, IFN monotherapy was given again during the 23rd week.

However, HCV RNA did not disappear from the serum after 2 courses of IFN monotherapy. At 36 weeks when HCV RNA was confirmed to be present in the serum, he received a combination therapy with IFN-α 3 MU, daily for 2 weeks and then 3 times a week for 14 weeks, along with oral ribavirin 600 mg daily in 2 divided doses. HCV RNA decreased 1 week after the institution of combination therapy, and became undetectable the next week; the loss of HCV RNA continued throughout the following 15 weeks on treatment. He was confirmed negative for serum HCV RNA at tests performed 4, 12 and 24 weeks, respectively, after the completion of combined IFN and ribavirin. Transaminase levels increased moderately 6 weeks after the initiation of combination therapy, but thereafter they returned to normal through the observation till 24 weeks after the completion of therapy. Chimp No. 224 did not respond to HCV infection by raising anti-HCV, and remained seronegative throughout 76 weeks since he received inoculation.

The biggest problem with HCV infection in human beings is its strong propensity to persist in up to 85% of individuals who contract it, although chances of persistence depend on sex, age and route of transmission [4, 5]. We have reported that HCV replicates very rapidly in chimpanzees inoculated with it at a doubling time of 6.3–8.6 h [7]; it is much shorter than that of HBV estimated at 1.9–3.4 days [8]. Such a fast replication velocity of HCV might contribute toward a high persistence rate after the primary infection; cellular immune responses to clear HCV may not be able to catch up with exponentially increasing population and rapidly evolving HCV quasispecies.

The sustained virological response to pegylated-IFN combined with ribavirin in patients with chronic hepatitis C remains insufficient; it is achieved in merely one half of the patients infected with HCV genotype 1 in a high viral load [9]. This stands in sharp contrast to the excellent efficacy of IFN on patients with acute prolonged hepatitis C [10]. Hence, we started treating 2 chimpanzees in whom acute infection with HCV had prolonged after they were experimentally transmitted with HCV [6, 7].

The preacute serum from one of them (chimp 210) served for illustrating the early dynamics of HCV infection, and provided blood centers with the standards of HCV RNA, containing defined copy numbers per milliliter, for calibrating nucleic acid amplification test (NAT).

Chimp 210 cleared HCV infection after he had received IFN-α 6 MU daily for 1 week (fig. 1). Chimp 224 failed to clear HCV after 2 courses of the IFN monotherapy. Thereafter, he responded to IFN 3 MU daily for 2 weeks followed by 3 times a week for 14 weeks in combination with oral ribavirin 600 mg daily. The virological response with loss of HCV RNA from the serum was achieved during treatment, and sustained 24 weeks after the completion of combination therapy (fig. 2). They both had kept HCV for 29 and 36 weeks before treatment, respectively, exceeding 6 months for the clinical definition of persistent infection. There remains a possibility, however, that chimp 210 may have been clearing HCV naturally without therapeutic intervention, in view of his remarkable response to a short-term IFN monotherapy.

Chimp 210 was infected with HCV of genotype 1b and 2a, and chimp 224 with HCV of genotypes 1b. HCV of genotype 2a might have disappeared earlier than HCV of genotype 1b in chimp 210, in view of different sensitivity to IFN of the 2 HCV genotypes in clinical trials [11, 12].

We have shown that acute prolonged HCV infection can be cured in chimps if they receive IFN alone or combined with ribavirin soon enough after they have been infected, as in the treatment of acute hepatitis C in patients [10]. Hopefully, the efficacy of IFN with or without ribavirin would be extended in additional chimps with acute prolonged HCV infection after they have completed transmission studies. Furthermore, such treatments would need to be considered in many chimps who have acquired persistent HCV infection after experimental transmission during the long past.

Acknowledgments

We thank Mr. Tetsuya Tanoue of Kumamoto Primates Park, Sanwa Kagaku Kenkyusho Co., Ltd., Kumamoto, for their excellent technical assistance in taking care of chimpanzees daily. We also thank Sumitomo Pharmaceutical Co., Ltd., Tokyo, Japan, for recombinant interferon. This work has been conducted under the guidance of the Viral Hepatitis Research Group and supported in part by Health and Labour Sciences Research Grants of the Ministry of Health, Labour and Welfare in Japan.
References

