Determinants of Overweight and Obesity in Lung Transplant Recipients

Linda Bossenbroeka Marjolein E.M. den Oudend Mathieu H.G. de Greefd W. Rob Doumaa, b Nick H.T. ten Hackena Wim van der Bija, c

Departments of aPulmonology, bLung Function and dLung Transplantation, and dHuman Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

The overweight lung transplant recipients had a significantly lower number of steps per day (4,686 ± 3,266 vs. 7,524 ± 3,448 steps/day, \(p = 0.01 \)) and a lower fat-free mass (64 ± 9 vs. 75 ± 6\%, \(p < 0.05 \)) compared to normal-weight recipients. Obese subjects had a lower percentage of predicted resting energy expenditure level compared to normal-weight recipients (90 ± 14 vs. 100 ± 14\% predicted, \(p = 0.04 \)).

Conclusion: Our data suggest that overweight in lung transplant recipients is associated with a lower fat-free mass and lower levels of physical activity and resting energy expenditure compared to normal-weight recipients.

Key Words
Activities of daily living · Resting energy expenditure · Overweight · Lung transplantation

Abstract
Background: Obesity-related diseases have been shown to affect post-lung transplantation survival. An estimated 30\% of lung transplant recipients develop overweight. Objective: The aim of this study was to examine the possible determinants of large increases in weight after lung transplantation. The contribution of physical activity, food intake, and resting energy expenditure was examined in lung transplant recipients.

Methods: In this cross-sectional study 21 overweight lung transplant recipients (11 men, mean age 57 ± 7 years; BMI 30 ± 3) and 21 normal-weight lung transplant recipients (11 men, mean age 56 ± 5 years; BMI 22 ± 3) were matched for disease, gender, age, prescribed medication, and time since lung transplantation. Physical activity was measured by a pedometer and a questionnaire; resting energy expenditure was measured by the ventilated-hood technique, and daily food intake by a dietician. Additionally, fat-free mass, lower-body strength, and fatigue were measured.

Results: The overweight lung transplant recipients had a significantly lower number of steps per day (4,686 ± 3,266 vs. 7,524 ± 3,448 steps/day, \(p = 0.01 \)) and a lower fat-free mass (64 ± 9 vs. 75 ± 6\%, \(p < 0.05 \)) compared to normal-weight recipients. Obese subjects had a lower percentage of predicted resting energy expenditure level compared to normal-weight recipients (90 ± 14 vs. 100 ± 14\% predicted, \(p = 0.04 \)).

Conclusion: Our data suggest that overweight in lung transplant recipients is associated with a lower fat-free mass and lower levels of physical activity and resting energy expenditure compared to normal-weight recipients.

Introduction
Lung transplantation is one of the treatment options in patients with end-stage lung disease [1–3]. Thirty percent of the living lung transplant recipients of the University Medical Center Groningen are overweight [body mass index (BMI) >25\%]. In line, Culver et al. [4] showed that a similar percentage (33\%) of their lung transplant recipients were overweight or obese. Obesity-related dis-
eases such as type II diabetes, hypertension, and cardiovascular disorders affect post-lung transplantation survival [5–9]. Five years after lung transplantation almost 17% of deaths are accounted for by malignancies and cardiovascular causes [10]. The 90-day mortality after lung transplantation increases five-fold when the BMI before lung transplantation exceeds 27 [2, 6, 9, 11]. In the healthy male population weight gain is associated with a reduction in pulmonary function [12].

The principal factors for developing overweight and obesity in the general population are limited physical activity, excessive food intake, and low resting energy expenditure [13–16]. Up to now, there has only been scarce information about the factors contributing to the development of overweight in lung transplant recipients. Ongoing administration of immunosuppressive therapy is associated with steroid myopathy and reduced skeletal muscle function in lung transplant recipients, which can cause limited exercise capacity [1, 17–21] and consequently, in the long term, reduced daily physical activity. Indeed, in the first year after lung transplantation a 40% lower number of steps compared to healthy controls was observed [22]. However, after 2 years the number of steps per day was found to be comparable to that of healthy persons [21]. The ongoing corticosteroid intake may also stimulate appetite and lead to an increased BMI, as demonstrated in kidney and heart transplant recipients [23, 24]. A decreased resting energy expenditure may theoretically also contribute to an increased BMI, as was shown in liver transplant recipients [25]. This contrasts with findings in healthy obese women that showed that obesity was linked to high values of resting energy expenditure and the fact that resting energy expenditure increased with higher BMI [26]. Obviously, we can only speculate about the specific underlying factors of overweight in lung transplant recipients. To prevent or to treat the development of overweight in a causal way, we believe it is very important to understand the underlying factors and their relationship.

The aim of this cross-sectional study was to examine the possible determinants of large increases in weight after lung transplantation. In this study the role of daily physical activity, resting energy expenditure, and daily food intake was examined in lung transplant recipients with the most prevalent underlying lung conditions, i.e. chronic obstructive pulmonary disease (COPD) and lung fibrosis.

Patients and Methods

Patients

In this study 42 lung transplant recipients of the University Medical Center Groningen were included (table 1). The inclusion criteria for all participants were: age >18 years, lung transplantation more than 1 year ago, COPD or lung fibrosis as the underlying disease state, and having signed a written informed consent form. In the overweight/obese group only recipients with a weight gain of more than 10% since lung transplantation and an actual

Table 1. Characteristics of the normal-weight and overweight/obese lung transplant recipients

<table>
<thead>
<tr>
<th></th>
<th>Normal-weight lung transplant recipients (n = 21)</th>
<th>Overweight/obese lung transplant recipients (n = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (M/F)</td>
<td>11/10</td>
<td>11/10</td>
</tr>
<tr>
<td>Age, years</td>
<td>56 ± 5</td>
<td>57 ± 7</td>
</tr>
<tr>
<td>Underlying disease (COPD/lung fibrosis)</td>
<td>17/4</td>
<td>17/4</td>
</tr>
<tr>
<td>Lung transplantation (unilateral/bilateral)</td>
<td>5/16</td>
<td>5/16</td>
</tr>
<tr>
<td>Time since lung transplantation, months</td>
<td>85 ± 49</td>
<td>73 ± 48</td>
</tr>
<tr>
<td>BMI before lung transplantation</td>
<td>21 ± 3</td>
<td>24 ± 3</td>
</tr>
<tr>
<td>Actual BMI</td>
<td>22 ± 3</td>
<td>30 ± 3*</td>
</tr>
<tr>
<td>Actual weight, kg</td>
<td>66 ± 13</td>
<td>88 ± 11*</td>
</tr>
<tr>
<td>Fat-free mass, %</td>
<td>75 ± 6</td>
<td>64 ± 9*</td>
</tr>
<tr>
<td>Fat-free mass index</td>
<td>17 ± 3</td>
<td>19 ± 2*</td>
</tr>
<tr>
<td>FEV1, l</td>
<td>3.1 ± 0.6</td>
<td>3.1 ± 0.5</td>
</tr>
<tr>
<td>FEV1, % predicted</td>
<td>87 ± 32</td>
<td>82 ± 24</td>
</tr>
<tr>
<td>FEV1, % of baseline</td>
<td>84 ± 14</td>
<td>83 ± 14</td>
</tr>
<tr>
<td>Prednisolone, mg/kg</td>
<td>5 ± 3</td>
<td>5 ± 3</td>
</tr>
</tbody>
</table>

Results are presented as means ± standard deviations. *p < 0.05.
BMI over 25 in the last 6 months were selected. The normal-weight lung transplant recipients were actively matched and had a BMI lower than 25 and a maximal weight gain of 2 kg in the last 6 months. The 2 groups were matched on the basis of the following criteria: disease (COPD or lung fibrosis), gender, age, prescribed immunosuppressive medication including cyclosporine versus tacrolimus, and time since lung transplantation. Exclusion criteria for both groups were: inability to walk independently, being a lung transplant recipient who had just started a diet or changed their eating habits, and symptoms of chronic rejection of the lung (based on the severity of bronchiolitis obliterans syndrome graded by the recommendations of the International Society for Heart and Lung Transplantation) [27]. The study protocol was approved by the local ethics committee of the hospital and all patients signed an informed consent form. According to the χ² power analysis of Portney and Watkins [28] a sample size of 42 recipients was needed (d.f. = 3, α = 0.05, w = 0.50).

All lung transplant recipients received postoperative immunosuppression induction consisting of rabbit anti-thymocyte globulins (Thymoglobulin) or anti-CD25 monoclonal antibodies (Simulect), and maintenance triple immunosuppression with cyclosporine (Neoral) (transplantation era 1990–2000) or tacrolimus (Prograf) (transplantation era 2001–2009) plus azathioprine (Imuran) or mycophenolate mofetil (Cellcept) plus prednisolone (postoperative dose 0.2 mg/kg, tapering to 0.1 mg/kg during the first postoperative year, and further tapering in the long term).

Methods

Body Composition: BMI and Fat-Free Mass

Body weight was measured with a reliable scale (in kilograms) with which the BMI was calculated (weight in kilograms divided by height in meters squared). The fat-free mass was measured by bioelectrical impedance analysis (Bodystat 1500) and is expressed as a percentage of the total body weight and as a fat-free mass index [29].

Daily Physical Activity

Performance-based daily physical activity was measured using a Digiwalker SW-200 (Yamax, Tokyo, Japan). This pedometer has been proven to accurately detect steps taken as an indication of the volume of daily physical activity [30]. It has been proven to have high convergent (r = 0.80) and discriminative validities (r = 0.80–0.90) [31, 32]. In this study patients were instructed to wear the pedometer for 10 days (from waking up until going to bed) and to record the number of steps per day in a diary. The number of minutes spent swimming, doing fitness exercises, or cycling were also reported in the diary and were converted into steps. Conversion was based on the metabolic equivalent of task (MET) per minute of these physical activities [33]. For example, 1 min of swimming is about 150 steps, and 1 min of fitness or cycling is about 100 steps. Steps per day including the converted steps were expressed as step equivalents. To exclude a novelty effect, the last 7 out of 10 daily records were used for further processing.

Questionnaire-based daily physical activity was assessed with the Short Questionnaire to Assess Health-Enhancing Physical Activity (SQUASH) [34]. This questionnaire is designed to give an indication of the habitual activity level and has been shown to be reliable and valid (r = 0.36–0.74) [34]. Physical activity was expressed as total minutes per week and as MET per minute.

Resting Energy Expenditure

Resting energy expenditure was measured using the ventilated hood technique [35]. Criteria for a valid resting energy expenditure were: a minimum of 15 min of steady state and no food intake for at least 4 h before the measurement. Testing was performed in the morning and the standard estimated error had to be smaller than 5% [35]. Resting energy expenditure was measured for 15–20 min [35].

Food Intake

Food intake was estimated by a trained dietician using an extensive food anamnesis to determine the daily amount of food intake, proteins, carbohydrates, and fat.

Lower-Body Strength

Lower-body strength was assessed using the sit-to-stand test. This test involves counting the number of times, within 30 s, that the patient can come to a full stand from a seated position without using his or her arms [36]. The 30-second sit-to-stand test has been shown to be reliable (test-retest correlation r = 0.80) and has been validated against the gold standard measure for lower-body strength: the leg press test [36]. According to Jones et al. [36] (1999), intraclass reliability is r = 0.89 (test-retest) and the criterion validity related to the leg press is r = 0.77 (test-retest).

Fatigue

Fatigue based on daily activities in the household, body care, and social activities was measured with the Dutch Exertion Fatigue Scale (DEFS) [37]. The DEFS contains 9 questions which can be answered on a 5-point scale ranging from 0 (no) to 4 (yes) [37]. A low score on the DEFS represents a low score of fatigue in daily activities (Cronbach’s alpha = 0.91 and rho = 0.91) [37].

Statistical Analysis

The statistical program SPSS (version 16.0) was used to analyze the data. Results are presented as means ± standard deviation. Post hoc we decided to split the overweight/obese lung transplant recipients into an overweight group and an obese group for further analysis. Mann-Whitney U tests were used to compare normal-weight and overweight/obese lung transplant recipients and to compare male and female lung transplant recipients. Multiple regression analysis (forward method) was performed to determine the variables contributing to overweight and obesity in lung fibrosis and COPD lung transplant recipients. BMI was the dependent variable. Independent variables were: percentage of fat-free mass, number of steps per day, resting energy expenditure, food calorie intake per day, lower-body strength, and fatigue. Significance levels were set at α = 0.05.

Results

Daily Physical Activity

Performance-based daily physical activity (number of steps per day and step equivalents) was significantly higher in normal-weight lung transplant recipients as compared to overweight/obese lung transplant recipients.
When looking at the overweight (BMI 1 25) and obese (BMI 1 30) lung transplant recipients separately, the normal-weight lung transplant recipients had a higher number of steps per day and step equivalents compared to overweight lung transplant recipients, though this difference was not significant. The normal-weight lung transplant recipients had a significantly higher number of steps per day compared to obese lung transplant recipients (p ! 0.01). There was also a significant difference in the number of steps per day between overweight and obese lung transplant recipients (p ! 0.01). Table 2. Outcome measures of normal-weight and overweight/obese lung transplant recipients

<table>
<thead>
<tr>
<th>Outcome measures</th>
<th>Normal-weight group (n = 21)</th>
<th>Overweight/obese group total (n = 21)</th>
<th>Overweight (n = 12)</th>
<th>Obese (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily physical activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steps/day, n</td>
<td>7,524 ± 3,448</td>
<td>4,686 ± 3,266*</td>
<td>5,919 ± 3,826</td>
<td>3,146 ± 1,481*</td>
</tr>
<tr>
<td>Step equivalents, n</td>
<td>9,759 ± 3,960</td>
<td>6,028 ± 3,728*</td>
<td>7,348 ± 3,797</td>
<td>4,378 ± 3,102*</td>
</tr>
<tr>
<td>SQUASH, min</td>
<td>1,587 ± 952</td>
<td>1,506 ± 959</td>
<td>1,525 ± 1,013</td>
<td>1,481 ± 949</td>
</tr>
<tr>
<td>SQUASH, MET/min</td>
<td>5,397 ± 4,422</td>
<td>5,046 ± 2,996</td>
<td>5,049 ± 2,629</td>
<td>5,042 ± 3,562</td>
</tr>
<tr>
<td>Food intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total intake, calories/day</td>
<td>2,532 ± 845</td>
<td>2,116 ± 388</td>
<td>2,000 ± 386</td>
<td>2,259 ± 360</td>
</tr>
<tr>
<td>Proteins, %</td>
<td>16 ± 3</td>
<td>16 ± 3</td>
<td>16 ± 3</td>
<td>16 ± 3</td>
</tr>
<tr>
<td>Carbohydrates, %</td>
<td>41 ± 9</td>
<td>41 ± 7</td>
<td>41 ± 6</td>
<td>43 ± 8</td>
</tr>
<tr>
<td>Fat, %</td>
<td>40 ± 8</td>
<td>42 ± 6</td>
<td>41 ± 6</td>
<td>41 ± 7</td>
</tr>
<tr>
<td>Saturated fat, %</td>
<td>14 ± 4</td>
<td>16 ± 3</td>
<td>16 ± 3</td>
<td>15 ± 2</td>
</tr>
<tr>
<td>Resting metabolic rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilated hood, kcal/day</td>
<td>1,506 ± 279</td>
<td>1,594 ± 205</td>
<td>1,603 ± 177</td>
<td>1,580 ± 259</td>
</tr>
<tr>
<td>Ventilated hood, % predicted</td>
<td>100 ± 14</td>
<td>93 ± 10**</td>
<td>94 ± 8</td>
<td>90 ± 14**</td>
</tr>
<tr>
<td>Lower-body strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sit-to-stand repetitions, n</td>
<td>11 ± 2</td>
<td>10 ± 4</td>
<td>11 ± 3</td>
<td>9 ± 6</td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFS</td>
<td>7 ± 7</td>
<td>11 ± 10</td>
<td>7 ± 7</td>
<td>16 ± 11**</td>
</tr>
</tbody>
</table>

Results are presented as means ± standard deviations. * p = 0.01; ** p = 0.05, differences between the normal-weight group and overweight/obese group; + p < 0.01; ++ p < 0.05, differences between the normal-weight group and the obese group.

(31.4) When looking at the overweight (BMI 1 25) and obese (BMI 1 30) lung transplant recipients separately, the normal-weight lung transplant recipients had a higher number of steps per day and step equivalents compared to overweight lung transplant recipients, though this difference was not significant. The normal-weight lung transplant recipients had a higher number of steps per day (fig. 1) and a higher number of step equivalents compared to obese lung transplant recipients. There was also a significant difference in daily physical activity between overweight and obese lung transplant recipients. Questionnaire-based physical activity was not significantly different between normal-weight and overweight/obese lung transplant recipients. In normal-weight lung transplant recipients men had a lower number of steps per day compared to women, thought this difference was not significant (6,692 ± 2,050 vs. 8,667 ± 4,689 steps/day). In overweight/obese lung transplant recipients men had a significantly higher number of steps per day compared to women (6,510 ± 3,241 vs. 2,408 ± 2,233 steps/day, p = 0.006).
Resting Energy Expenditure

There was a significant difference in resting energy expenditure expressed as a percentage of the predicted resting energy expenditure between normal-weight and overweight/obese lung transplant recipients (table 2). When looking at the overweight and obese lung transplant recipients separately, the predicted resting energy expenditure was significantly higher in the normal-weight lung transplant recipients compared to the obese lung transplant recipients. The resting energy expenditure in normal-weight men was significantly higher compared to women (1,671 ± 211 vs. 1,299 ± 210 kcal/day, p = 0.003).

Food Intake

There was no significant difference in food intake between normal-weight and overweight/obese lung transplant recipients (table 2). There was also no significant difference when the overweight/obese group was divided into 2 groups. The normal-weight male lung transplant recipients had a higher total food intake compared to women (3,067 ± 764 vs. 1,944 ± 451 kcal/day, p = 0.002).

Lower-Body Strength

Two overweight lung transplant recipients were not able to perform the sit-to-stand test. There was no significant difference in lower-body strength between normal-weight and overweight/obese lung transplant recipients (table 2). There was also no significant difference when the overweight/obese group was divided into 2 groups.

Fatigue

There was no significant difference in fatigue between normal-weight and overweight/obese lung transplant recipients. The overweight lung transplant recipients had a lower score of fatigue compared to the obese lung transplant recipients, though this difference was not significant. Fatigue was significantly lower in normal-weight lung transplant recipients compared to obese lung transplant recipients.

BMI and Determinants for BMI

The BMI was calculated every 3 months in all lung transplant patients. The mean BMI of overweight lung transplant recipients continuously increased after transplantation, while normal-weight patients tend to keep their BMI stable after lung transplantation. Up to 48 months, all patients are included in this figure. There is no difference in the number of patients per group over time in this figure.

In order to find the determinants of BMI, the following variables were included in the multiple regression analysis: percentage of fat-free mass, number of steps per day, resting energy expenditure, food calorie intake per day, lower-body strength, and fatigue. BMI was the dependent variable. Determinants for a higher BMI were a lower mean number of steps per day, a lower percentage

Table 3. Multiple regression analysis for the determinants of BMI in lung transplant recipients

<table>
<thead>
<tr>
<th>Determinants</th>
<th>B</th>
<th>Standard error</th>
<th>Beta</th>
<th>T value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>39.901</td>
<td>5.468</td>
<td>7.297</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Fat-free mass (% predicted)</td>
<td>−0.359</td>
<td>0.076</td>
<td>−0.597</td>
<td>−4.697</td>
<td><0.001</td>
</tr>
<tr>
<td>Ventilated hood (kcal/day)</td>
<td>0.009</td>
<td>0.003</td>
<td>0.362</td>
<td>3.091</td>
<td>0.004</td>
</tr>
<tr>
<td>Physical activity (steps/day)</td>
<td>0.000</td>
<td>0.000</td>
<td>−0.251</td>
<td>−2.061</td>
<td>0.046</td>
</tr>
</tbody>
</table>

R² = 0.547.

Fig. 2. BMI before lung transplantation and the change in BMI after transplantation. BMI are expressed as means and 95% confidence intervals. Overweight lung transplant patients continue to increase their BMI after lung transplantation, while normal-weight patients tend to keep their BMI stable after lung transplantation. Up to 48 months, all patients are included in this figure. There is no difference in the number of patients per group over time in this figure.
of fat-free mass, and a lower resting energy expenditure (table 3). Together these variables explained 55% of the variance in BMI.

Discussion

This is the first study to systematically investigate the underlying factors of overweight in lung transplant recipients by comparing overweight/obese lung transplant recipients with matched normal-weight recipients. Explaining variables for overweight and obesity in lung transplant recipients with lung fibrosis and COPD in this study were a lower percentage of fat-free mass, a lower mean number of steps per day, and a lower resting energy expenditure. In contrast, food intake, body strength, and fatigue did not contribute to the variance in BMI.

The number of steps per day of lung transplant recipients shown in this study is in line with previous research [21]. Importantly, the number of steps per day was significantly lower in overweight/obese lung transplant recipients as compared to normal-weight lung transplant recipients. According to Tudor-Locke and Bassett [38] activity scores can be labeled as ‘sedentary’ for the obese lung transplant recipients, as ‘low’ for the overweight group, and as ‘somewhat active’ for the normal-weight group. Whether a lower number of steps per day in overweight/obese patients is a cause or consequence of a high BMI is difficult to determine in this cross-sectional study. Obviously, a longitudinal study design is needed to prove this. If overweight/obese lung transplant recipients would increase their number of steps per day to the level of normal-weight lung transplant recipients and stick to their eating habits, it is estimated that the BMI would be similar between the 2 groups after 87 months. Interestingly, the time since lung transplantation is also around this number of months. We suspect that when lung transplant patients increase their number of steps per day after transplantation to about 7,500 steps/day, the large increase in BMI after lung transplantation can slowly be reduced. It is intriguing that being overweight/obese was associated with self-reported fatigue, which is in line with findings in healthy (non-lung transplant recipients) individuals [39]. In our study, fatigue was not associated with daily physical activity (data not shown). Apparently fatigue is not the driving force behind decreased daily physical activity and a higher BMI.

The questionnaire-based daily physical activity was higher, though not significantly, in the normal-weight lung transplant recipients compared to the overweight and obese lung transplant recipients. Because the SQUASH also assesses household work, this could explain in part why the performance-based method demonstrated a significant difference and the questionnaire-based method did not.

Strikingly, the food intake (kilocalories/day) of the overweight and obese lung transplant recipients is lower, though not significantly, compared to normal-weight lung transplant recipients. This difference might be explained by an underreported energy intake. For example, 1 study in healthy individuals demonstrated that both men (31–36%) and women (27–32%) underreported their energy intake based on a food frequency questionnaire [40]. Importantly, the percentage of underreported energy intakes in this study increased with a higher BMI [40]. Whether underreported energy intakes really matter in our study is questionable as we did not use a self-administrated food questionnaire; instead, a trained and dedicated dietician took the food anamnesis. Furthermore, it is conceivable that lung transplant recipients are more eager to care for their weight and eating habits because they are frequently seen and alerted by their pulmonary physicians.

One of the explaining variables for overweight and obesity in the present study was a lower resting energy expenditure. Looking at table 2 it can be acknowledged that subjects with overweight/obesity burn more calories per day (due to more body weight), yet they burn less calories per day if expressed as the percentage predicted. Apparently, overweight/obese subjects are relatively less metabolically active at rest. Indeed the latter fits with the finding of a lower fat-free mass. Confirming these findings, other studies have shown that about 81% of the variability in resting energy expenditure can be explained by fat-free mass, fat mass, age, and gender [41, 42]. Another explanation for the lower resting energy expenditure found in our overweight/obese patients may be their lower physical activity level as the literature suggests that lower physical activity associates with a lower resting energy expenditure [43].

A number of methodological characteristics of this study are relevant for a correct interpretation. In the overweight group there were some patients with a BMI above 25 (range 19.4–27.3) before lung transplantation. For this study we selected the overweight recipients on the basis of a weight gain of more than 10% since lung transplantation and an actual BMI of over 25 during at least the last 6 months. In both the overweight group and the normal-weight group the distribution of BMI was normal.
The internal validity of this study is limited due to the observational nature of the study and its small sample size. Nevertheless, this is one of the scarce studies that systematically examined the underlying factors of overweight and obesity in a well-characterized group of lung transplant recipients. Moreover, we have put much effort into adequately matching normal and overweight/obese subjects.

In conclusion, our data suggest that overweight/obese lung transplant recipients are less physically active and have a lower resting metabolism. We believe that the lower percentage of fat-free mass is in line with these findings. Importantly, a higher food intake did not significantly contribute to a higher BMI. The clinical relevance of this data is that lung transplant recipients should be encouraged to participate in exercise programs after lung transplantation and should aim for a rather high daily physical activity level in order to prevent the development of overweight or obesity.

Acknowledgements

Ventilated-hood measurements were performed by the department of pulmonary function testing. The extensive food anamneses were performed by Kirsten Weerstand and Marja Mensen.

Financial Disclosure and Conflicts of Interest

This study has not been financially funded. The authors have no financial or other conflict of interest.

References

