Maternal Serum Adiponectin at 11–13 Weeks of Gestation in Pregnancies Delivering Small for Gestation Neonates

Surabhi Nandaa Ranjit Akolekara Danielle Sodrea, b Eirini Vaikousia, b Kypros H. Nicolaidesa, b

aHarris Birthright Research Centre for Fetal Medicine, King’s College Hospital, and bFetal Medicine Unit, University College Hospital, London, UK

Abstract

Objective: To investigate whether maternal serum levels of adiponectin in the first trimester are altered in pregnancies that subsequently deliver small for gestational age (SGA) neonates.

Methods: Maternal serum adiponectin and pregnancy-associated plasma protein A (PAPP-A) were measured at 11–13 weeks’ gestation in 50 singleton normotensive pregnancies that delivered SGA neonates and 300 non-SGA controls. The median adiponectin and PAPP-A levels in the SGA and non-SGA groups, expressed as multiple of the unaffected median (MoM), were compared.

Results: The distribution of serum adiponectin was made gaussian by square root (sqrt) transformation. Regression analysis in the non-SGA group demonstrated that for sqrt adiponectin a significant independent contribution was provided by maternal age, weight, smoking status, African and South-Asian racial origin. Each value in the SGA and non-SGA group was then converted into a multiple of the non-SGA median (MoM) after adjustment for maternal characteristics. In the SGA group, compared to the non-SGA controls, median maternal serum PAPP-A was decreased (0.79, interquartile range [IQR] 0.54–1.06 MoM vs. 1.00, IQR 0.71–1.39 MoM) but adiponectin MoM was not significantly different (0.89, IQR 0.65–1.31 MoM vs. 1.02, IQR 0.70–1.29 MoM).

Conclusion: Maternal serum adiponectin is not a useful biochemical marker for early prediction of SGA.
Adiponectin and Small for Gestation

Methods

Study Population

This was a case-control study drawn from a large prospective observational study for early prediction of pregnancy complications in women attending for their routine first hospital visit in pregnancy at King’s College Hospital, London, UK. In this visit, which is held between 11th and 13th weeks of gestation, we record maternal characteristics and medical history, and perform combined screening for aneuploidies by measurement of the fetal crown-rump length (CRL) and nuchal translucency thickness and maternal serum PAPP-A and free β-hCG [11, 12]. We stored serum and plasma at –80°C for subsequent biochemical analysis from women agreeing to participate in the study. Written informed consent was obtained for the study, which was approved by King’s College Hospital ethics committee.

In this study we measured maternal serum adiponectin in 50 cases that subsequently delivered SGA neonates in the absence of preeclampsia because we have previously reported that in this condition the levels are increased [13]. The levels were compared to 300 non-SGA controls who delivered a phenotypically normal neonate at term. Cases and controls were selected at random from our database of stored samples. None of the samples in this study were previously thawed and refrozen.

Outcome Measures

Data on pregnancy outcome were obtained from the maternity computerised records or the general medical practitioners of the women and were recorded in our database. The neonate was considered to be SGA if the birth weight was less than the 3rd percentile for gestation at delivery, using a reference range derived from our population [10]. Neonates with birth weight at or above the 5th percentile were classified as non-SGA.

Sample Analysis

A duplicate serum sample of 250 μl was used to measure adiponectin concentration by a quantitative enzyme-linked immunosassay (ELISA) technique using Quantikine Adiponectin ELISA kit (DRP300; R&D Systems Europe Ltd., Abingdon, UK). The lower limit of detection of the assay was 0.246 ng/ml and the between-batch coefficient of variation (CV) was 6.8% at an adiponectin concentration of 20.5 ng/ml, 5.8% at 74.4 ng/ml and 6.9% at 10.8 ng/ml. All samples were analyzed in duplicate and those with a CV exceeding 10% were re-analyzed.

Literature Search

We searched Medline and Embase from January 1995, when adiponectin was first described, to September 2010 to identify studies reporting on the relationship between SGA neonates and adiponectin concentration in the plasma or serum of the mother, neonate or child.

Statistical Analysis

The distribution of serum adiponectin was made gaussian by square root (sqrt) transformation and normality was confirmed using Kolmogorov-Smirnov test (D = 0.03, p = 0.20). In the group of 300 non-SGA controls, multiple regression analysis was used to determine which of the factors amongst the maternal characteristics and gestation provided a significant contribution in predicting sqrt adiponectin [14]. Each value in the SGA and non-SGA group was then converted into a multiple of the non-SGA median (MoM) after adjustment for those characteristics found to be significant in the multiple regression analysis. Similarly, the distribution of PAPP-A was made gaussian after logarithmic transformation and each value in the SGA and non-SGA group was then converted in a MoM after adjustment for gestation, maternal age, racial origin, maternal weight, smoking, parity, and method of conception as previously described [15]. Mann-Whitney U test was used to compare median MoM values of adiponectin and PAPP-A between the outcome groups. Regression analysis was used to determine the significance of association between maternal serum adiponectin and PAPP-A in the SGA and non-SGA groups.

The statistical software package SPSS l6.0 (SPSS Inc., Chicago, Ill., USA) was used for data analyses.

Results

The maternal characteristics of the SGA and non-SGA groups are compared in table 1. In the SGA group the median maternal weight was lower, more women delivered SGA neonates in their previous pregnancies and more required assisted conception techniques.

Multiple regression analysis in the non-SGA group demonstrated that for sqrt adiponectin significant independent contribution was provided by maternal age, weight, smoking status, African and South-Asian racial origin but not by fetal CRL (p = 0.459), method of conception (p = 0.637) or parity (p = 0.219); sqrt adiponectin expected = 130.19 + 0.74 × maternal age in years + (-18.24 if the racial origin was African, –31.89 if South Asian, 0 if Caucasian, East Asian or Mixed) – 0.53 × maternal weight in kg – 10.38 if cigarette smoker; R² = 0.223, p < 0.0001.

In the SGA group, compared to the non-SGA controls, median maternal serum PAPP-A MoM was decreased but adiponectin MoM was not significantly different (table 2; fig. 1). There was no significant association of sqrt adiponectin MoM with birth weight percentile in either the
SGA group (p = 0.335) or the non-SGA group (p = 0.558). Similarly, there was no significant association of sqrt adiponectin MoM with gestation at delivery in the SGA group (p = 0.070). There was a significant association of sqrt adiponectin MoM with log 10 PAPP-A MoM in the SGA group (r = 0.344, p = 0.014) but not in the non-SGA group (p = 0.094).

Table 2. MoM (IQR) for maternal serum adiponectin and PAPP-A in the outcome groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unaffected controls (n = 300)</th>
<th>Small for gestation (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiponectin ng/ml</td>
<td>12.035 (5.959–17.085)</td>
<td>11.373 (8.193–14.938)</td>
</tr>
<tr>
<td>MoM</td>
<td>1.02 (0.70–1.29)</td>
<td>0.89 (0.65–1.31)</td>
</tr>
<tr>
<td>PAPP-A mIU/ml</td>
<td>3.07 (2.03–4.76)</td>
<td>2.21 (1.50–4.08)</td>
</tr>
<tr>
<td>MoM</td>
<td>1.00 (0.71–1.39)</td>
<td>0.79 (0.54–1.06)*</td>
</tr>
</tbody>
</table>

Comparisons between outcome groups by Mann-Whitney U test. Significance level * p < 0.05.

Literature Search

The literature search identified 15 studies reporting on the association between serum or plasma adiponectin concentration and SGA neonates in pregnancy, the neonatal period and early childhood. In some of the studies, adiponectin was measured by radioimmunoassay (RIA) but in most studies an ELISA technique was used. The birth weight cut-off for definition of SGA was the 10th, 5th or the 3rd centile. The levels of adiponectin in the SGA group were lower than in the non-SGA group in about half of the studies and there were no significant differences in the other half (table 3).

Discussion

The findings of this study confirm that in pregnancies delivering SGA neonates there is evidence of impaired placentation reflected in reduced maternal serum concentration of PAPP-A at 11–13 weeks’ gestation. In contrast, the maternal serum adiponectin levels in pregnancies that subsequently deliver SGA neonates are not significantly different from pregnancies with normal fetal growth.
Fig. 1. Maternal serum adiponectin and PAPP-A, expressed as multiple of the normal median (MoM), at 11–13 weeks’ gestation plotted against fetal CRL in pregnancies delivering SGA neonates (●) and non-SGA neonates (○).

Table 3. Studies reporting on the association between SGA and serum or plasma adiponectin concentration (mean or median) in the mother, neonate or child

<table>
<thead>
<tr>
<th>Reference (first author)</th>
<th>Assay</th>
<th>Time point of evaluation</th>
<th>Small for gestational age</th>
<th>Appropriate for gestational age</th>
<th>p</th>
<th>SGA definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>During pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fasshauer, 2007 [17]</td>
<td>ELISA</td>
<td>33–41 WG</td>
<td>6</td>
<td>10</td>
<td>NS</td>
<td><5th centile</td>
</tr>
<tr>
<td>Kyriakakou, 2008 [7]</td>
<td>RIA</td>
<td>36–40 WG</td>
<td>20</td>
<td>20</td>
<td><0.05</td>
<td><3rd centile</td>
</tr>
<tr>
<td>Savvidou, 2008 [18]</td>
<td>ELISA</td>
<td>23–25 WG</td>
<td>15</td>
<td>44</td>
<td>NS</td>
<td><5th centile</td>
</tr>
<tr>
<td>Mazaki-Tovi, 2009 [19]</td>
<td>ELISA</td>
<td>28–39 WG</td>
<td>78</td>
<td>234</td>
<td><0.001</td>
<td><10th centile</td>
</tr>
<tr>
<td>Meral, 2010 [20]</td>
<td>ELISA</td>
<td>36–41 WG</td>
<td>20</td>
<td>20</td>
<td><0.05</td>
<td><10th centile</td>
</tr>
<tr>
<td>Neonatal period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamoda, 2004 [8]</td>
<td>RIA</td>
<td>cord blood</td>
<td>28</td>
<td>34</td>
<td>0.02</td>
<td><2.5th centile</td>
</tr>
<tr>
<td>Martínez-Cordero, 2006 [21]</td>
<td>RIA</td>
<td>cord blood</td>
<td>50</td>
<td>50</td>
<td>NS</td>
<td><2,500 g</td>
</tr>
<tr>
<td>Takaya, 2007 [22]</td>
<td>ELISA</td>
<td>cord blood</td>
<td>20</td>
<td>45</td>
<td><0.005</td>
<td><5th centile</td>
</tr>
<tr>
<td>Ibáñez, 2008 [23]</td>
<td>ELISA</td>
<td>1–4 days</td>
<td>20</td>
<td>20</td>
<td><0.05</td>
<td><10th centile</td>
</tr>
<tr>
<td>Girls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyriakakou, 2008 [7]</td>
<td>RIA</td>
<td>cord blood</td>
<td>24</td>
<td>24</td>
<td>NS</td>
<td><2.5th centile</td>
</tr>
<tr>
<td>Boys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meral, 2010 [20]</td>
<td>ELISA</td>
<td>1–4 days</td>
<td>24</td>
<td>24</td>
<td>NS</td>
<td><3rd centile</td>
</tr>
<tr>
<td>Childhood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cianfarani, 2004 [9]</td>
<td>RIA</td>
<td>5–14 years</td>
<td>51</td>
<td>24</td>
<td><0.0001</td>
<td><3rd centile</td>
</tr>
<tr>
<td>López-Bermejo, 2004 [24]</td>
<td>ELISA</td>
<td>3–9 years</td>
<td>32</td>
<td>37</td>
<td><0.0001</td>
<td><10th centile</td>
</tr>
<tr>
<td>Evagelidou, 2007 [25]</td>
<td>ELISA</td>
<td>6–8 years</td>
<td>20</td>
<td>35</td>
<td><0.05</td>
<td><10th centile</td>
</tr>
<tr>
<td>Sancakli, 2008 [26]</td>
<td>RIA</td>
<td>5–7 years</td>
<td>24</td>
<td>62</td>
<td>NS</td>
<td><2.5th centile</td>
</tr>
</tbody>
</table>

WG = Weeks’ gestation.
In normal pregnancy, maternal serum adiponectin concentration increases with maternal age, decreases with weight and is lower in women of African and South-Asian racial origin and in cigarette smokers. Within the narrow gestational range of 11–13 weeks there was no significant association between maternal serum adiponectin and fetal CRL. A previous longitudinal study of 11 normal pregnancies reported that maternal serum adiponectin levels were inversely related to body mass index and increased between 7 and 17 weeks, decreasing thereafter until term [16]. Consequently, in the comparison between the SGA and non-SGA groups, the appropriate adjustments were made for these maternal characteristics.

Previous studies examining adiponectin levels in the mothers, neonates and children from SGA pregnancies reported that the levels were lower or not significantly different from non-SGA pregnancies [7–9, 17–26]. Similarly, studies investigating the relation between adiponectin levels and birth weight in healthy pregnancies have found contradictory results with some reporting a positive correlation [27–31] and others no significant association [32, 33]. These conflicting results may be the consequence of methodological differences between studies, including assay techniques, definitions of SGA and differences in study populations, because most of these studies did not adjust the measured levels for maternal characteristics.

The reduced adiponectin levels in association with poor fetal growth, observed in some of the studies, may reflect the suggested role of this protein in the regulation of angiogenesis, the inflammatory response and insulin resistance. In previous studies, we reported that at 11–13 weeks the maternal serum adiponectin concentration is increased in pregnancies that subsequently develop preeclampsia and decreased in pregnancies that develop gestational diabetes mellitus [13, 14]. The possible association between reduced adiponectin levels and impaired fetal growth is compatible with the findings that SGA neonates are more likely to develop the metabolic syndrome [34] and children born SGA exhibit altered body composition with increased visceral adiposity [35].

Impaired fetal growth is associated with increased risk of perinatal death and handicap. Early estimation of patient-specific risks for SGA could potentially improve pregnancy outcome by shifting antenatal care from a series of routine visits to a more individualised approach both in terms of the schedule and content of such visits [36]. These risks of perinatal death and handicap are substantially reduced in cases of SGA identified antenatally, compared to those detected after birth [37]. Additionally, there is evidence that the prophylactic use of low-dose aspirin started in early pregnancy can potentially halve the incidence of SGA [38]. We have previously reported that the use of an algorithm combining maternal characteristics and a series of biophysical and biochemical markers at 11–13 weeks could potentially identify, at a false positive rate of 10%, about 75% of pregnancies without preeclampsia delivering SGA neonates before 37 weeks and 45% of those delivering at term [39]. Our finding of no significant differences in maternal serum adiponectin levels at 11–13 weeks’ gestation between the SGA and non-SGA groups implies that the altered maternal levels do not precede the onset of fetal growth deficiency and therefore, measurement of maternal serum adiponectin in the first trimester is unlikely to contribute in the early prediction of fetal growth restriction.

Acknowledgements

The study was supported by a grant from The Fetal Medicine Foundation (UK Charity No. 1037116). The assay for adiponectin was performed by Ms. Tracy Dew at the Department of Biochemistry, King’s College Hospital, London, UK.

References

Adiponectin and Small for Gestation

10 Nicolaides KH: Reference range of birth weight with gestation and first-trimester prediction of small-for-gestational age and are inversely related to postnatal catch-up growth. J Clin Endocrinol Metab 2004;89:1346–1351.

