Temperature Management in Stroke – an Unsolved, but Important Topic

Bernd Kallmünzer Rainer Kollmar
Department of Neurology, University of Erlangen-Nürnberg, Erlangen, Germany

Background
Stroke is the second leading cause of death worldwide and the leading cause of disability in high-income countries. The increase of the world’s population and its increasing longevity portend an enormous socioeconomic problem for the future [1]. In contrast, therapeutic options are disillusioning at present and no effective treatments are available for hemorrhagic stroke other than blood pressure control and management of secondary effects. In patients with acute ischemic stroke, the early use of antithrombotic therapy [2], intravenous thrombolysis [3, 4] and intra-arterial clot retrieval remain the only established acute therapies [5]. Two devices for clot retrieval are FDA approved at present [6, 7]. However, many patients are ineligible for this approach or may not benefit from its use despite heroic attempts. New, innovative modalities of treatment of acute ischemic stroke are desperately needed.

Recent guidelines [8, 9] recommend antipyretic treatment for stroke patients based on the association between increased body temperature and poor neurological outcome [10, 11]. However, there are no precise recommendations on the methods for fever control, pharmacological or mechanistic, due to a lack of clinical evidence. This is contrary to the robust experimental data, suggesting multiple modes of neuroprotection mediated by temperature control in various animal models of acute brain in-
jury. Moreover, therapeutic hypothermia is apparently the only neuroprotective method to show a successful transfer from bench to bedside [12], since two milestone publications demonstrated a higher survival rate and improved neurological outcome after cardiac arrest with the use of induced hypothermia [13, 14].

Evidence for the Influence of Increased Body Temperature in Stroke

Experimental Studies

Increased body and brain temperatures influence the pathophysiologic cascade after acute brain injury by different pathways, including increased levels of excitatory amino acids (e.g. glutamate and dopamine), free radicals, lactic acid and pyruvate; increases in ischemic depolarization; blood-brain barrier breakdown; impaired enzymatic function, and reduced cytoskeletal stability [15]. These events may lead to cerebral edema, reduce cerebral perfusion pressure and secondarily lead to larger volumes of ischemic injury. In varied stroke subtypes, including ischemic stroke, subarachnoid hemorrhage, and intracerebral hemorrhage, these effects were observed in different intensities [16]. In rodents, external warming resulted in aggravated neuronal damage after global ischemia, substantiating the causal contribution of elevated body temperature to worse functional outcome at least in animal models [17, 18].

Clinical Studies

A meta-analysis demonstrated the association of fever/elevated body temperature with poor outcome across multiple outcome measures, using 39 clinical studies covering 14,431 patients with stroke and other brain injuries [10]. Elevated body temperature was significantly associated with worse outcome as indicated by higher mortality rates, greater disability, more dependence, worse functional outcome, greater disease severity and longer stays in the hospital and intensive care unit (ICU). The size of the effect ranged in different studies from moderate to small (0.26 for scores on the Glasgow Outcome Scale) to large [over 0.8 for the modified Ranking Scale (mRS)]. However, in contrast to preclinical data, a causal link between body temperature and outcome after stroke cannot be derived from these studies, as fever may represent an epiphenomenon of cerebral injury.

Notably, 67% of the hemorrhagic stroke studies and all ischemic stroke studies evaluated the results of temperatures taken on admission or within the first 24 h. This underlines in particular the importance of the first few hours. However, experimentally described secondary delayed injury after stroke due to inflammation and apoptosis suggests the potential impact of elevated body temperature beyond the first days. Clinical studies of a more protracted course of fever including the first weeks after stroke onset should be undertaken in the future to identify the therapeutic time window for therapeutic interventions.

Treatment of Increased Body Temperature after Stroke

Experimental Studies

While the association of hyperthermia and unfavorable outcome after stroke is very well established in animal models, the exclusive impact of symptomatic antipyretic treatment has rarely been studied [19]. Therefore, no reliable preclinical data substantiate the usage of clinically established treatments, such as antipyretics like paracetamol or metamizole, after stroke. This lack may be due to a deficiency in appropriate animal models leading to predictable increases in body and brain temperatures.

Clinical Trials on Fever Treatment after Stroke

Extensive research on fever treatment in stroke patients should follow the aforementioned association between fever and clinical outcome. However, a meta-analysis demonstrated the current limitation of data [20]. Only five prospective, controlled studies reached the scientific level to be included. Since then, results from a large phase 3 clinical trial on medical treatment [21] and a prospective controlled trial using endovascular cooling [22] have become available.

Pharmacological Treatment Studies

Table 1 summarizes important prospective, controlled pharmacologic treatment studies on fever, performed during the past 10 years. Their design was rather simple. Dippel et al. [23] investigated 75 patients treated with paracetamol (1,000 or 500 mg) or placebo as a suppository, 6 times daily for 5 days. Koennecke and Leistner [24] administered paracetamol 1,000 mg or placebo orally 4 times daily for 5 days to 44 participants. Kasner et al. [25] exclusively treated 39 patients during the early phase after stroke onset (24 h) with 4,550 mg oral paracetamol versus placebo. Either paracetamol 1,000 mg or ibuprofen 400 mg (orally or as a suppository) ver-
sus placebo was administered to 75 participants 6 times daily for 5 days in a trial by Dippel et al. [25]. Castillo et al. [unpubl.], 2003 gave metamizole 6 g/day for 3 days. Neither one single study, nor the analysis of their pooled data showed a significant impact on death or dependency. The multicenter, placebo-controlled PAIS trial [21] followed these small studies. 1,400 patients with acute ischemic stroke or intracerebral hemorrhage were enrolled within 5 years in 29 Dutch study centers and received either a daily dose of 6 g paracetamol for 3 days or placebo. Only 70% of the patients completed the full treatment period. The mean body temperature at 24 h from treatment onset was 0.26 °C (95% CI 0.18–0.31) lower in the active than in the placebo group, but no significant difference was seen in the number of patients with improvement beyond expectation on the mRS after 3 months. Interestingly patients in the PAIS trial with fever at baseline (37–39 °C) had a better outcome with paracetamol. This finding, although not derived from a predefined endpoint, may be crucial for the interpretation of these studies. It underlines the high importance to carefully define a qualifying body temperature, from which on treatment may be initiated. However, prophylactic treatment with high doses of antipyretic medication in the absence of fever may be an inadequate approach. It lowered the effect size in clinical studies and may have prevented or retarded the diagnosis and workup of ongoing infections.

Physical Treatment Studies

Promising strategies for physical treatment of fever in stroke have been suggested, but reliable data are even more limited than for pharmacologic approaches (table 2). The studies described in what follows used either a fixed combination with acetaminophen [26, 27] or a standardized sequence of different antipyretic means arranged as a ‘rescue’ strategy in cases of treatment failure [22, 28]. As effects may cumulate, results are not exclusively dedicated to the physical cooling method itself but may derive from additive or even superadditive effects of concomitant antipyretic medication.

In one study, air-circulating cooling blankets in combination with acetaminophen were not able to effectively reduce body temperature within 24 h in 113 patients compared to acetaminophen alone [26]. Water-circulating systems achieved a significant reduction in fever burden, but no data are available on functional outcome [27]. Two studies used intravascular devices for body temperature control: Diringer [28] treated 296 patients with fever (>38.0 °C) following a sequence of acetaminophen, ibuprofen, cooling blankets, gastric lavage and ice packs. 154 patients were randomized to additional endovascular cooling with a CoolGard catheter system for 72 h, inserted through a central venous access. Broessner et al. [22] used long-term prophylactic, endovascular temperature control (Cool Line device set to a target temperature of 36.5 °C and inserted into the subclavian vein) for up to 14 days after subarachnoid hemorrhage, intracerebral hemorrhage or ischemic stroke in addition to a 4-step antipyretic regi-

Table 1. Prospective, randomized trials on pharmacologic antipyretic treatment of patients with acute stroke

<table>
<thead>
<tr>
<th>Reference, year</th>
<th>Intervention</th>
<th>n</th>
<th>Disease</th>
<th>Blinding</th>
<th>Number of study centers</th>
<th>Qualifying body temperature, °C</th>
<th>Duration of treatment, days</th>
<th>Measurement</th>
<th>Temperature reduction vs. control (24 h), °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koennecke and Leistner [24], 2001</td>
<td>paracetamol 4 g/day (oral)</td>
<td>44</td>
<td>IS</td>
<td>1</td>
<td>1</td>
<td><37.5</td>
<td>5</td>
<td>tympanic</td>
<td>n.p.</td>
</tr>
<tr>
<td>Kasner et al. [73], 2002</td>
<td>paracetamol 4,550 mg (oral)</td>
<td>39</td>
<td>IS, ICH</td>
<td>1; 2</td>
<td>2</td>
<td><38.5</td>
<td>24</td>
<td>bladder</td>
<td>0.22 (95% CI –0.08 to 0.51)</td>
</tr>
<tr>
<td>Dippel et al. [25], 2003</td>
<td>paracetamol 6 g/day or ibuprofen 2,400 mg/day (oral or rectal)</td>
<td>151</td>
<td>IS</td>
<td>2</td>
<td>3</td>
<td>36–39</td>
<td>5</td>
<td>rectal/ tympanic</td>
<td>0.27 (95% CI 0.05–0.48)</td>
</tr>
<tr>
<td>Castillo et al. [unpubl.], 2003</td>
<td>metamizole 6 g/day (oral)</td>
<td>60</td>
<td>IS</td>
<td>2</td>
<td>1</td>
<td>37–38</td>
<td>3</td>
<td>tympanic</td>
<td>n.p.</td>
</tr>
<tr>
<td>Den Hertog et al. [20], 2009</td>
<td>paracetamol 6 g/day (oral/rectal)</td>
<td>1,400</td>
<td>IS, ICH</td>
<td>2</td>
<td>29</td>
<td>36–39</td>
<td>3</td>
<td>tympanic/ rectal</td>
<td>0.26 (95% CI 0.18–0.31)</td>
</tr>
</tbody>
</table>

n = Number of patients enrolled; IS = ischemic stroke; ICH = intracerebral hemorrhage; n.p. = not provided. Blinding: 1 = single blind; 2 = double blind.
men including (1) acetaminophen, (2) ibuprofen, (3) pethidine, and (4) cooling blanket. Both catheter-based trials achieved an effective control of body temperature, but only one study investigated functional outcome after 6 months, which remained unaffected by the procedure.

In summary, the available data may allow the assertion that physical antipyretic strategies are feasible for critically ill stroke patients, but reliable data on their safety and efficacy beyond the ICU are lacking.

Conclusions

There is broad consensus that symptomatic fever treatment represents an elementary part of stroke care. Both pharmacologic and physical antipyretic methods are able to effectively lower body temperature. However, beneficial effects on clinical outcome await confirmation. Future work should concentrate on multimodal treatment protocols and more advanced methods of physical cooling, including endovascular techniques. A rigorous control of fever is the basic prerequisite of antipyretic treatment in order to achieve its translation to improved functional outcome.

Evidence for the Influence of Induced Hypothermia in Stroke

One major aim of stroke research is to identify neuroprotective agents or methods and transfer their potential to clinical trials. The term ‘neuroprotection’ means to preserve or save reversibly injured neurons from further damage and avoid cell death. As the knowledge about the pathophysiologic pathways after focal cerebral ischemia has increased, the number of agents that were neuroprotective in animal experiments rose [29]. Yet, none of these neuroprotective agents has proven to be effective in randomized controlled human trials. As neuroprotective treatments typically target one or more different interlinking mechanisms after ischemic brain damage, parallel pathways might be activated, or the optimal time window for treatment might be missed. Moreover, neuroprotective agents tend to preferably work in models of transient as compared to permanent ischemia. However, there are robust data that most occluded arteries recanalize more slowly in human [30]. Consequently, the combination of recanalization methods with concomitant neuroprotective agents can represent a successful approach.

At present, therapeutic hypothermia is being considered the most promising neuroprotective candidate for stroke. It incorporates all of the criteria of the Stroke Therapy Academic Industry Roundtable [31] and influences a number of pathophysiologic pathways after stroke. Moreover, hypothermia is already being used to improve neurological outcome and overall survival in comatose patients treated within 6 h after cardiac arrest [13, 14].

Experimental Studies

Experimental studies in different species as well as in vitro models indicate multiple modes of action after per-
man and transient cerebral ischemia [32]. Some of the major mechanisms are described as follows: hypothermia reduces the cerebral infarct size, edema formation and damage to the blood-brain barrier [15, 16]. Moreover, it diminishes activation of microglia, production of oxygen free radicals, and the release of excitotoxic neurotransmitters as well as lactate and pyruvate. Besides, the cerebral metabolic rate, apoptosis and the local inflammatory response are reduced. There are important key messages arising from experimental data which are highlighted by representative studies below [33].

The results of therapeutic cooling in models of permanent focal cerebral ischemia are inconclusive. Some publications find no reduction of infarct volume using different methodology [34, 35]. In contrast, profound hypothermia to 24°C for 6 h reduced the infarct volume by up to 84% [36] and even short periods of cooling (60 min) at target temperatures between 30 and 34.5°C during 1 h of middle cerebral artery occlusion (MCAO) reduced the infarct volume by 60% [37]. Obviously, the time to treatment onset of hypothermia influences its effectiveness. For example, infarct reduction was apparent 6 h after MCAO, but it disappeared after 24 h [38]. In this study, hypothermia to 33°C was performed with a delay of 1 h and maintained for 5 h. Results from animal experiments in transient cerebral ischemia models are more consistently positive than those evaluating permanent ischemia, and there is more clear evidence for neuroprotection. The majority of studies used goal temperatures between 30 and 33°C in models of 60–180 min of MCAO. Even after observation periods of 30 days, a reduction in infarct size of 51% was shown [39].

Hypothermia was more effective when started early after symptom onset. An animal study compared the use of intra- and postischemic hypothermia [40] and subjected the animals to 120 min of MCAO. Hypothermia to 33°C maintained for 120 min was started at ischemia onset or with a delay of 90, 120 or 180 min, and the animals were allowed to survive for 72 h. Hypothermia delayed by 90 or 120 min resulted in higher survival and functional outcome compared to normothermia, but treatment after 180 min showed no measurable effect compared with the control group. Similar results appeared for the size of infarct. However, it was suggested that the delay of hypothermic therapy may be overcome by increasing the duration of cooling. One study showed that moderate hypothermia (33°C) induced 1 h after transient MCAO (120 min) for a duration of 5 h led to persistent neuroprotection over a period of 5 days [41]. Yanamoto et al. [42] showed that hypothermia to 33°C started directly after reperfusion for 24 h in a rodent model of 180 min of MCAO reduced infarct volume by 32% at 24 h. In contrast, hypothermia to 32°C started after 120 min and maintained for 22 h did not reduce infarct volume after 2 h of MCAO [39].

In summary, available data demonstrate that hypothermia is more successful when applied in reperfusion models, but there are only a limited number of animal studies investigating the combination of recanalization therapy and hypothermia. Whether hypothermia could serve as a ‘bridging therapy’ for the time from symptom onset until recanalization, thereby preserving neuronal tissue until cerebral blood flow is re-established and reducing reperfusion-associated injury, has poorly been addressed so far. An early animal study did not demonstrate any additional effects of hypothermia (32°C) compared to rt-PA treatment alone [43]. Potentially, the beneficial effects of cooling could have been overlooked in this study since thrombolysis alone led to very good functional outcome and small infarcts. Another study investigated the effects of hypothermia (33°C) induced 1 h after thromboembolic occlusion of the middle cerebral artery [44]. Hypothermia reduced infarct volume and mortality compared to the control group and effects of thrombolysis were not affected by hypothermia as seen in perfusion-weighted imaging, suggesting no serious side effects of cooling on rt-PA-induced recanalization in vivo. However, due to the relatively high mortality rate of the used model, other effects might have been missed [44].

Consequent comparison of different target temperatures is another rather unexplored topic. Most experimental studies compare normothermia to one or two different degrees of hypothermia [45, 46]. However, results are inconsistent. While cooling to 34°C reduced infarct size by 60%, there was no infarct visible at 29°C [47]. Huh et al. [45] showed 59% infarct reduction for 33°C, but less reduction at 27°C. In a recent study, different target temperatures were compared systematically [48]. Rats were subjected to 90 min of MCAO and kept at core temperatures of 37, 36, 35, 34, 33, and 32°C over a period of 4 h. Endpoints after 24 h and 5 days suggest a U-shaped curve of effectiveness of hypothermia, as temperatures of 34 and 33°C were superior to all others.

Rewarming is a critical aspect in hypothermia treatment. In a recent animal study, slow rewarming reduced infarct size and postischemic inflammation and improved neurological outcome compared to animals treated either with normothermia or with hypothermia and subsequent rapid rewarming [49].

Patients under hypothermia treatment often require mechanical ventilation, which itself may affect the clini-
Temperature Management in Stroke

Conclusions and Limitations of Animal Stroke Studies on Induced Hypothermia

In summary, van der Worp et al. [12] elucidated that therapeutic hypothermia reduced infarct size by 44% (95% CI 40–47). Efficacy was highest with reduction to lower temperatures (31°C), when treatment was started before or at the onset of ischemia, and in temporary rather than permanent ischemia models. However, a reduction in infarct volume by about one third was also observed with a temperature reduction to 35°C, with initiation of treatment between 90 and 180 min, and in permanent ischemia models.

Besides the limitations of the stroke models themselves, major differences between the experimental and the clinical settings need to be considered when methods are transferred from bench to bedside.

- Despite many similarities, thermoregulation in rodents remains different from thermoregulation in human grown-up individuals (e.g. different ratio of body mass and surface). Therefore, hypothermia is induced and sustained comparatively easily in rodents by physical means, such as ice packs, intravenous fluids or even spontaneous hypothermia due to sedation. A more complex and invasive methodology is necessary when hypothermia is applied in human.

- Discomfort and vegetative regulatory mechanisms, such as cold shivering, are hard to assess in rodents, but represent essential limiting factors for clinical trials.

- Rodent models of space-occupying stroke are associated with high mortality, show difficulty in the assessment of functional deficits and may therefore be prone to selection and interpretation bias.

- Infections are one major complication of therapeutic hypothermia in humans. In preclinical studies, they are not assessed sufficiently, and adequate diagnostic and therapeutic strategies are not taken into account.

Clinical Studies

Despite the robust experimental data on the neuroprotective effects of induced hypothermia and its successful usage in patients after cardiac arrest, at present the number of clinical studies remains rather small. Questions of highest clinical relevance have not been addressed adequately yet, including the optimal target temperature, best method of cooling, rewarming approaches, optimal and sufficient treatment induction and duration as well as shivering control. In general, hypothermia is divided into severe hypothermia equaling a temperature below 28°C, moderate hypothermia equaling 28–33°C, and mild hypothermia equaling 33–36°C. To date, the majority of studies has used mild or moderate hypothermia due to several reasons: with its degree, the incidence of major known side effects during hypothermia increases, including hypokalemia, cardiac rhythm and conduction disturbances, infectious complications and coagulopathy. Moreover, severe hypothermia requires sedation and mechanical ventilation, which in turn is associated with further adverse events and may impair a precise evaluation of neurological deficits.

In essence, clinical studies of induced hypothermia can be divided into two groups: those including patients who are sedated and mechanically ventilated and those including patients who receive therapeutic cooling while being awake. Tables 3 and 4 summarize the most important studies during the past 12 years.

Therapeutic Cooling in Ventilated Patients

One hundred patients with a large MCA stroke were treated by moderate hypothermia during sedation and mechanical ventilation [52–55]. All patients were cooled to a target temperature of 33°C, measured by a bladder thermistor. Hypothermia was initiated between 4 and 24 h after symptom onset, and maintained for 48–72 h. The mortality rate was 44% in the first of the study series.
compared to 78% in a historical standard treatment group [56]. Some of the survivors recovered to independence, indicated by a median Barthel index of 70 (range, 60–85) and a mean mRS score of 2.6 (range, 2–4). In these studies, therapeutic cooling was effective in controlling the intracranial pressure (ICP). However, a secondary rise of ICP, occasionally exceeding initial ICP levels and requiring additional treatment with osmotic therapy, was observed on rewarming in a significant number of patients. The rewarming period represented the most criti-

Table 3. Prospective clinical trials on induced hypothermia in sedated stroke patients

<table>
<thead>
<tr>
<th>Reference year</th>
<th>Disease</th>
<th>Study design</th>
<th>n</th>
<th>Method of cooling</th>
<th>Target temperature, °C</th>
<th>Time to treatment onset (mean ± SD), h</th>
<th>Treatment duration days</th>
<th>ICP values provided</th>
<th>Morality %</th>
<th>Functional outcome at day 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwab et al. [55], 1998</td>
<td>SIS</td>
<td>2</td>
<td>25</td>
<td>cooling blankets, cold infusions, cold washing</td>
<td>33</td>
<td>14 ± 7</td>
<td>2–3</td>
<td>+</td>
<td>48</td>
<td>mRS: 2.6 (2–4) SSS: 38 (28–48) BI: 70 (60–85)</td>
</tr>
<tr>
<td>Schwab et al. [54], 2001</td>
<td>SIS</td>
<td>1</td>
<td>50</td>
<td>cooling blankets, alcohol packs, ice bags</td>
<td>33</td>
<td>22 ± 9</td>
<td>1–3</td>
<td>+</td>
<td>38</td>
<td>mRS: 2.9 (2–5) BI: 65 (10–85)</td>
</tr>
<tr>
<td>Georgiadi et al. [53], 2001</td>
<td>SIS</td>
<td>1</td>
<td>6</td>
<td>endovascular</td>
<td>33</td>
<td>28 ± 17</td>
<td>2–3</td>
<td>–</td>
<td>17a</td>
<td>–</td>
</tr>
<tr>
<td>Georgiadi et al. [52], 2002</td>
<td>SIS</td>
<td>3</td>
<td>19</td>
<td>cooling blankets + fanning (n = 12) or endovascular (n = 7)</td>
<td>33</td>
<td>24 ± 6</td>
<td>2–3</td>
<td>+</td>
<td>47a</td>
<td>–</td>
</tr>
<tr>
<td>Krieger et al. [57], 2001</td>
<td>SIS</td>
<td>3</td>
<td>6</td>
<td>cooling blanket, iced water, alcohol</td>
<td>32 ± 1</td>
<td>6 ± 1</td>
<td>1–4</td>
<td>–</td>
<td>33</td>
<td>mRS: 3.1 ± 2.3</td>
</tr>
<tr>
<td>Kollmar et al. [58], 2010</td>
<td>ICH</td>
<td>2</td>
<td>12</td>
<td>endovascular</td>
<td>35</td>
<td>3–12</td>
<td>10</td>
<td>+</td>
<td>0</td>
<td>mRS: 4.2 ± 0.7</td>
</tr>
</tbody>
</table>

SIS = Severe ischemic stroke; ICH = intracerebral hemorrhage; ICP = intracranial pressure; SSS = Scandinavian Stroke Scale; BI = Barthel index; NIHSS = National Institutes of Health Stroke Scale. Study design: 1 = no control group; 2 = historical control group; 3 = nonrandomized parallel control arm. n = Number of patients in the active treatment group. Mortality rate is given by day 90 except where otherwise indicated. Data for functional outcome are presented as mean values ± standard deviation or range, except where otherwise indicated.

a During acute phase. b Median (range).

Table 4. Prospective studies on induced hypothermia in awake patients with ischemic stroke

<table>
<thead>
<tr>
<th>Reference, year</th>
<th>Design</th>
<th>n</th>
<th>Method of cooling</th>
<th>Target temperature, °C</th>
<th>Time to treatment onset, h</th>
<th>Treatment duration, h</th>
<th>Morality, %</th>
<th>Clinical outcome measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kammersgaard et al. [60], 2000</td>
<td>2</td>
<td>17</td>
<td>cooling blanket (forced air method)</td>
<td>35.5</td>
<td>3 ± 4</td>
<td>6</td>
<td>6c</td>
<td>SSS at month 6</td>
</tr>
<tr>
<td>Knoll et al. [61], 2002</td>
<td>1</td>
<td>18</td>
<td>water-perfused cooling mattress</td>
<td>36–37</td>
<td>26</td>
<td>24</td>
<td>12</td>
<td>BI and mRS at day 90</td>
</tr>
<tr>
<td>De Georgia et al. [62], 2004</td>
<td>3</td>
<td>18</td>
<td>endovascular</td>
<td>33</td>
<td>9 ± 3</td>
<td>24</td>
<td>28</td>
<td>NIHSS and mRS at day 5 and day 30</td>
</tr>
<tr>
<td>Lyden et al. [63], 2005</td>
<td>1</td>
<td>18</td>
<td>endovascular</td>
<td>33</td>
<td>8 ± 3</td>
<td>24</td>
<td>17c</td>
<td>NIHSS, BI, mRS at discharge and day 30</td>
</tr>
<tr>
<td>Kollmar et al. [64], 2009</td>
<td>1</td>
<td>10</td>
<td>ice-cold saline i.v.</td>
<td>–</td>
<td>2 ± 0.3</td>
<td>3b</td>
<td>0d</td>
<td>NIHSS at discharge</td>
</tr>
<tr>
<td>Hemmen et al. [65], 2010</td>
<td>3</td>
<td>28</td>
<td>endovascular</td>
<td>33</td>
<td>5.9a</td>
<td>24</td>
<td>21.4</td>
<td>NIHSS at 24 h, day 30 and day 90; mRS at day 90</td>
</tr>
</tbody>
</table>

n = Number of patients in the hypothermia group. Design: 1 = no control group; 2 = historical control group; 3 = prospective, randomized control group. SSS = Scandinavian Stroke Scale; BI = Barthel index; NIHSS = National Institutes of Health Stroke Scale. Mortality rate is given by day 90 except where otherwise indicated.

a Patients in the group ‘hypothermia combined with thrombolysis’. b Treatment effect lasted for approximately 3 h. c Mortality by 28 days. d During acute phase.

[55] compared to 78% in a historical standard treatment group [56]. Some of the survivors recovered to independence, indicated by a median Barthel index of 70 (range, 60–85) and a mean mRS score of 2.6 (range, 2–4). In these studies, therapeutic cooling was effective in controlling
Therapeutic Cooling in Awake Patients

As mentioned before, major factors limit studies on hypothermia in patients under sedation and mechanical ventilation. These factors include limited ICU resources, invasiveness, respirator-associated infections and inability to reliably assess the neurological status. Since stroke units with adequate conditions for close monitoring became an integral part of care, large studies in awake patients may be a promising approach for the future. So far, the number of studies on non-sedated patients has been limited. Kammersgaard et al. [60] published a prospective study, in which 17 patients with induced hypothermia were compared to 56 control patients. The therapy was restricted to only 6 h and used cooling blankets. Compensatory shivering was treated by administration of 25–50 mg of pethidine. This approach lowered the body temperature from 36.8 to 35.5°C during treatment. The study was not powered to investigate differences in mortality or functional outcome, although a trend towards lower mortality for the hypothermia group was evident. Another study performed by Knoll et al. [61] may be regarded as connecting antipyretic treatment and induced hypothermia: body temperature was maintained between 36 and 37°C for 24 h in 18 patients, who were laid on a water-perfused cooling mattress and treated with pethidine and dihydroergotoxine. Target temperature was achieved in all but 2 patients and no major side effects were described. In the COOL AID II study, de Georgia et al. [62] for the first time used endovascular cooling methods to induce and maintain mild hypothermia over 24 h in 18 awake patients. MRI data indicated less lesion growth with hypothermia compared to 22 normothermic patients under standard medical management. Thirteen patients reached the target temperature after a mean of 77 ± 44 min and hypothermia was well tolerated in most patients. Clinical outcomes were similar in both groups. Lyden et al. [63] performed the Intravascular Cooling in the Treatment of Stroke study, in which meperidine and buspirone were used to prevent and counteract shivering. One particular challenge for hypothermia treatment in acute stroke is its combination with recanalization strategies. Up to date, three studies have addressed this issue in awake patients: a pilot study investigated 10 participants with acute stroke, presenting within a 3-hour time window [64]. Intravenous infusion of ice-cold saline was used for the induction of hypothermia (20 ml/kg body weight) shortly after the initial CT scan (in 9 of 10 patients during the thrombolytic therapy). This method was feasible and safe for awake patients in the emergency setting. Shivering was treated and prevented by the use of pethidine and buspirone. The tympanic temperature decreased within 60 min by an average of 1.7°C and remained below 36°C for 3 h. Another approach combined intravenous thrombolysis in acute stroke with endovascular cooling in 10 patients. A minimum time period of 30 min was allowed to elapse after rt-PA infusion, until catheter insertion procedures were
initiated. A precise decrease in the core temperature was achieved by this method and shivering was successfully suppressed by buspirone, meperidine and cutaneous warming with a heating blanket. Recently the final data from a prospective controlled trial became available: the Intravascular Cooling in the Treatment of Stroke study investigated the feasibility and safety of hypothermia in combination with intravenous thrombolysis in a multicenter setting [65]. Forty-four patients were enrolled within 3 h and 14 patients between 3 and 6 h after symptom onset. Intravenous thrombolysis was performed in all patients presenting within the early time window and in 29% of cases presenting within the expanded time window. Twenty-eight patients were randomized to endovascular-based hypothermia. The insertion of the catheter began 30–180 min after completion of the rt-PA infusion and the time until achievement of the target temperature (33 °C) following catheter placement was 138 ± 198 min. In 2 patients, treatment failed due to technical difficulties. After 3 months, no significant differences were found in the number of patients with an mRS score of 0 or 1 in the active group compared to standard treatment. Pneumonia occurred more frequently in patients under hypothermia (50% vs. 10%) but did not significantly affect functional outcome after 3 months. A total of 4 patients suffered symptomatic intracranial hemorrhage, and 1 of them had received treatment with hypothermia. However, these findings are not yet sufficient to draw sound conclusions on efficacy and await confirmation in future trials.

Research Questions

1. **Target temperature**: the optimal target temperature remains to be determined. Large clinical studies are going to concentrate on 35 or 33°C. Given the experimental and preliminary clinical experiences at present, this range may be an adequate choice. Results from different trials with analogue design will enable a comparison.

2. **Duration of hypothermia**: at present, the most reliable data for successful hypothermia treatment after acute brain injury arise from the cardiac arrest trials [13, 14]. In analogy, the 12- to 24-hour treatment duration might be appropriate for the translation to stroke patients. However, a surrogate parameter for neuronal damage, such as serum biomarkers or lesion growth on MRI, might be of major importance. It will assist in valid ‘dose finding’ and either favor adjustment of target temperature or hypothermia duration in case of treatment failure.

3. **Ventilation mode during hypothermia**: in mechanically ventilated patients, α-stat or pH-stat mode can be used. Both techniques exert an influence on cerebral blood flow [50, 51]. Future studies in mechanically ventilated patients should at least predefine and control the ventilation modes since this might be of high relevance for penumbral regions and ICP.

4. **Hypothermia and thrombolysis**: preclinical data clearly show that hypothermia is far more effective in transient than in permanent ischemia [12, 33]. Therefore, the combination of recanalization therapies (especially intravenous thrombolysis) with hypothermia is an urgent research topic. In vitro experiments describe a decrease in enzymatic activity of rt-PA by 2–4% during hypothermia to 30–33°C [66]. However, latest clinical studies suggest feasibility and safety of the combination, but results are preliminary and await confirmation in future trials [64–67].

5. **Techniques for temperature control**: external or internal cooling represent the major oppositional approaches [68]. So far, there is uncertainty as to the optimal method for temperature induction and control. It remains questionable whether external cooling is sufficient and tolerable for awake patients. On the other hand, endovascular approaches are characterized by invasiveness and complex handling in the emergency situation. Cur-

| Table 5. Rate of pneumonia and cardiac arrhythmia (supra- and ventricular arrhythmia except asymptomatic bradycardia) during hypothermia treatment |
|---------------------------------|-----------------|-----------------|
| Reference, year | Rate of pneumonia, % | Significant cardiac arrhythmia, % |
| Sedated patients with severe hemispheric stroke | Schwab et al. [55], 1998 | 40 | 60 |
| | Schwab et al. [54], 2001 | 48 | 62 |
| | Georgiadis et al. [53], 2001 | 100 | 50 |
| | Georgiadis et al. [52], 2002 | 78 | 42 |
| | Krieger et al. [57], 2001 | 40 | 33 |
| Sedated patients with intracerebral hemorrhage | Kollmar et al. [58], 2010 | 100 | 0 |
| Awake patients with ischemic stroke | Kammersgaard et al. [60], 2000 | n.p. | 0 |
| | Knoll et al. [61], 2002 | 11 | 0 |
| | De Giorgi et al. [62], 2004 | 0 | 17 |
| | Lyden et al. [63], 2005 | 28 | 11 |
| | Hemmen et al. [65], 2010 | 50 | n.p. |

n.p. = Not provided.
currently, novel techniques, such as nasopharyngeal cooling devices, are under evaluation. A fast and easy approach for induction of hypothermia is the intravenous rapid infusion of cold saline [64], which is easy to use, cheap, and mostly well tolerated in awake patients. However, safety, and effectiveness of cold infusions need further assessment in clinical trials.

(6) Antishivering treatment: different pharmacologic approaches, such as meperidine and buspirone have shown to be effective for treatment of shivering [69] in awake stroke patients. However, opioids have severe side effects, including sedation, nausea and vomiting. This may cause discomfort to the patient, limit the tolerability of cooling and increase the risk for aspiration. Further research should address different antishivering protocols and re-evaluate the current concepts.

(7) Infections: one major side effect, observed repeatedly in previous trials, was an increase in infectious complications during hypothermia treatment, first of all pneumonia (table 5). Up to date, the pathogenesis of these complications has been poorly understood. It may be speculated that the known immunosuppressive effects of stroke itself [70] interact with hypothermia treatment and the combination of both increases the susceptibility to infectious agents. One adequate therapeutic approach could be the prophylactic antibiotic treatment during hypothermia, as already suggested for acute stroke in previous trials [71, 72].

Conclusions

The data available at present do not yet justify the routine use of hypothermia treatment for unselected stroke patients outside of clinical trials. Effective cooling techniques are feasible to induce and maintain stable systemic hypothermia. However, the efficacy of this approach on functional outcome requires confirmation by large, controlled trials. Further important issues need to be addressed by these investigations, including the duration and depth of hypothermia, choice of optimal cooling methodology, as well as adequate handling of complications, infections and shivering.

References

Temperature Management in Stroke

Cerebrovasc Dis 2011;31:532–543

Yenari MA, Palmer JT, Bracci PM, Steinberg GK: Thrombolysis with tissue plasminogen activator (tPA) is temperature dependent. Thromb Res 1995;77:475–481.

