Corneal Dystrophies
Developments in Ophthalmology

Vol. 48

Series Editor

F. Bandello  Milan
Corneal Dystrophies

Volume Editors

Walter Lisch  Hanau
Berthold Seitz  Homburg/Saar

43 figures, 30 in color, and 13 tables, 2011
Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus.

Disclaimer. The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publisher and the editor(s). The appearance of advertisements in the book is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 2011 by S. Karger AG, P.O. Box, CH–4009 Basel (Switzerland)
www.karger.com
Printed in Switzerland on acid-free and non-aging paper (ISO 9706) by Reinhardt Druck, Basel
ISSN 0250–3751
Contents

VI  List of Contributors
VII  Preface
   Lisch, W. (Hanau); Seitz, B. (Homburg/Saar)

1  IC3D Classification of Corneal Dystrophies
   Møller, H.U. (Viborg); Weiss, J.S. (New Orleans, La.)

9  The Clinical Landmarks of Corneal Dystrophies
   Lisch, W. (Hanau); Seitz, B. (Homburg/Saar)

24  Histological Landmarks in Corneal Dystrophy: Pathology of Corneal Dystrophies
   Vemuganti, G.K.; Rathi, V.M.; Murthy, S.I. (Hyderabad)

51  The Genetics of the Corneal Dystrophies
   Aldave, A.J. (Los Angeles, Calif.)

67  Differential Diagnosis of Schnyder Corneal Dystrophy
   Weiss, J.S. (New Orleans, La.); Khemichian, A.J. (Detroit, Mich.)

97  Clinical and Basic Aspects of Gelatinous Drop-Like Corneal Dystrophy
   Kawasaki, S.; Kinoshita, S. (Kyoto)

116  Stage-Related Therapy of Corneal Dystrophies
    Seitz, B. (Homburg/Saar); Lisch, W. (Hanau)

154  Author Index
155  Subject Index
List of Contributors

Anthony J. Aldave  
The Jules Stein Eye Institute  
David Geffen School of Medicine  
The University of California  
100 Stein Plaza, Los Angeles, CA 90095 (USA)  
E-Mail aldave@jsei.ucla.edu

Satoshi Kawasaki  
Department of Ophthalmology  
Kyoto Prefectural University of Medicine  
465 Kajii-cho, Hirokoji-agaru  
Kawaramachi-dori, Kamigyo-ku  
Kyoto 602-0841 (Japan)  
E-Mail bluenova@koto.kpu-m.ac.jp

Arbi J. Khemichian  
Kresge Eye Institute  
Wayne State University School of Medicine  
4717 St Antoine, Detroit, MI 48201 (USA)  
E-Mail arbi.khemichian@utsouthwestern.edu

Shigeru Kinoshita  
Department of Ophthalmology  
Kyoto Prefectural University of Medicine  
465 Kajii-cho, Hirokoji-agaru  
Kawaramachi-dori, Kamigyo-ku  
Kyoto 602-0841 (Japan)  
E-Mail shigeruk@ophth.kpu-m.ac.jp

Walter Lisch  
Department of Ophthalmology  
City Hospital of Hanau  
Leimenstrasse 20, DE - 63450 Hanau (Germany)  
E-Mail lisch.hanau@t-online.de

H.U. Møller  
Department of Pediatric Ophthalmology  
Viborg Hospital  
DK - 8800 Viborg (Denmark)  
E-Mail hans.ulrik.moeller@sygehusviborg.dk

Somasehila I. Murthy  
Cornea and Anterior Segment Service  
L. V. Prasad Eye Institute  
Kallam Anji Reddy Campus,  
L. V. Prasad Marg, Banjara Hills,  
Hyderabad, 500 034 (India)  
E-Mail smurthy@lvpei.org

Varsha M. Rathi  
Cornea and Anterior Segment Service  
L. V. Prasad Eye Institute  
Kallam Anji Reddy Campus,  
L. V. Prasad Marg, Banjara Hills,  
Hyderabad, 500 034 (India)  
E-Mail varsharathi@lvpei.org

Berthold Seitz  
Department of Ophthalmology  
University of Saarland  
Kirbergerstrasse 1, Building 22,  
DE - 66424 Homburg/Saar (Germany)  
E-Mail berthold.seitz@uks.eu

Geeta K. Vemuganti  
School of Medical Sciences  
University of Hyderabad  
Hyderabad, 500046 (India)  
E-Mail gkvemuganti@gmail.com

Jayne S. Weiss  
Chair of Department of Ophthalmology  
Herbert Kaufman, Professor of Ophthalmology  
Louisiana State University Health Science Center  
2020 Gravier Street  
New Orleans, LA 70112 (USA)  
E-Mail jayneweiss@aol.com
Preface

The cornea, basically composed of the epithelium, stroma and endothelium, is the major refractive organ of the optic system in addition to serving as a mechanical barrier. The corneal epithelium is the most regular arrangement of stratified epithelium in the whole human body. The cells, composed of 6–7 different layers, are tightly and orderly arranged without intercellular spaces. We know that some corneal dystrophies are only characterized by the occurrence of epithelial opacities. The contact lens-induced regression of opacities in epithelial corneal dystrophies can be interpreted as a contact lens-induced reduction of epithelial layers. As in other connective tissues, the major portion of the corneal stroma is composed of extracellular matrix macromolecules which are responsible for the strength and transparency of this tissue. Some corneal dystrophies are thought to result in part from abnormalities in corneal stromal cell function. Corneal stromal cells synthesize and degrade matrix materials during corneal morphogenesis and proper metabolism of such materials is essential. Stromal corneal dystrophies recur after decades on the graft due to the long-term transformation of transplant keratocytes into pathological host keratocytes. The corneal endothelium is a monolayer of hexagonal cells that forms the posterior corneal surface. An intact monolayer of endothelial cells is essential for the functional endothelial barrier to preserve a relative dehydration of the stroma and a prerequisite to corneal transparency. If the integrity of the monolayer is breached, corneal edema rapidly develops as we can see in some endothelial corneal dystrophies. The replacement of the posterior cornea, called Descemet’s stripping endothelial keratoplasty, represents a modern and sophisticated surgical procedure in the treatment of endothelial corneal dystrophies.

With the revolution in molecular genetics, our understanding of corneal dystrophies has changed in the last 15 years as disorders have been mapped and the genes responsible have been identified. Today we know that phenotypic heterogeneity – the same gene causing different forms of corneal dystrophies – and genotypic heterogeneity – different genes causing a phenotypically identical corneal dystrophy – do exist. Research continues to uncover important knowledge on corneal dystrophies. However, the identification of the gene and mutations in corneal dystrophies can only be interpreted as a start in the mosaic puzzle for uncovering the complex relationships
in the pathophysiological molecular mechanisms. In general, further molecular physiological examinations and the evaluation of animal models are necessary to precisely define the essential protein defect in the different types of corneal dystrophy. The development of a causal therapy for corneal dystrophies must be the big scientific challenge in the future.

Walter Lisch, Hanau
Berthold Seitz, Homburg/Saar