Anemia of Chronic Disease in Chronic Obstructive Pulmonary Disease: A Case-Control Study of Cardiopulmonary Exercise Responses

Afroditi K. Boutou, Ioannis Stanopoulos, Georgia G. Pitsiou, Theodoros Kontakiotis, George Kyriazis, Lazaros Sichletidis, Paraskevi Argyropoulou

Respiratory Failure Unit, Pulmonary Clinic, and Immunology Laboratory, Aristotle University of Thessaloniki, ‘G. Papanikolaou Hospital’, Thessaloniki, Greece

Patients, which represents a prevalence of 10.24%; the severity of anemia was generally mild (mean Hb: 12.19 ± 0.66 g/dl). Patients with ACD had a higher Medical Research Council dyspnea score compared to controls (2.78 ± 0.44 vs. 2.07 ± 0.55; p < 0.001) and lower peak O\textsubscript{2} uptake (VO\textsubscript{2}) (59.54 ± 17.17 vs. 71.26 ± 11.85% predicted; p < 0.05), peak work rate (54.94 ± 21.42 vs. 68.72 ± 20.81% predicted; p < 0.05) and peak VO\textsubscript{2}/heart rate (69.07 ± 17.26 vs. 82.04 ± 18.22% predicted; p < 0.05). There was also a trend for a lower anaerobic threshold (48.48 ± 15.16 vs. 55.42 ± 9.99% predicted; p = 0.062). No exercise parameter indicative of respiratory limitation differed between the groups.

Conclusions: ACD occurs in approximately 10% of stable COPD patients and has a negative impact on dyspnea and circulatory efficiency during exercise.

Introduction

Anemia of chronic disease (ACD) is a condition that occurs in patients with acute or chronic immune activation [1–3]. Although the pathogenesis of ACD is not fully understood, there are substantial data supporting the no-
tion that inflammatory cytokines affect iron homeo-
sis, hemoglobin (Hb) production and the bone marrow
response to erythropoietin [2, 4]. Chronic obstructive
pulmonary disease (COPD) is a disorder characterized
not only by airflow limitation but also by important sys-
temic manifestations due to the circulation of inflamma-
ty mediators [5–7]. In light of this, COPD is a disorder
that could be associated with ACD.

The prevalence of anemia in populations with COPD
of various severity ranges from 7.5 to 21.0% [8, 9]. How-
ever, a combined clinical and laboratory approach has
never been used to investigate the specific prevalence of
ACD in COPD, while the only study that attempted to as-
sociate anemia and inflammation in COPD did not ex-
clude patients with renal impairment [10]. Regardless of
its etiology, anemia has been associated with increased
morbidity [11] and mortality [9, 11, 12], higher costs of
care [9], increased dyspnea [12] and reduced 6-min walk
distance [12] in COPD patients. Although cardiopulmo-
nary exercise testing (CPET) can provide a quantitative
assessment of a patient's cardiovascular and ventilatory
response during exercise [13], both of which can be im-
paired due to anemia, it has never been used for the func-
tional evaluation of anemic COPD patients.

Based on the aforementioned data, the aims of this
study were to (1) estimate the prevalence of ACD based
on specific clinical and laboratory criteria in a popula-
tion of consecutive patients with stable COPD and (2) investi-
gate the impact of ACD on dyspnea and exercise capacity,
utilizing CPET.

Material and Methods

Study Population

The first part of the study followed a cross-sectional design.
The relevant population consisted of consecutive, clinically stable
patients with COPD who visited the Respiratory Failure Unit and
the Pulmonary Clinic of the ‘G. Papanikolaou’ Hospital (Thessa-
loniki, Greece) as outpatients between December 2009 and May
2010. A COPD diagnosis was confirmed, according to the Amer-
ican Thoracic Society criteria, by the presence of a ratio of forced
expiratory volume in 1 s (FEV₁) to forced vital capacity of <0.7
measured after albuterol administration [14]. Patients were char-
acterized as clinically stable if they had had no exacerbation, hos-
pital admission, respiratory infection or change in medication
within 3 months prior to entering the study. Subjects with a his-
tory of asthma were excluded.

The second part of this project was a case-control study. The
first 29 patients with stable COPD and ACD from the initial popu-
lation were the ‘cases’ and another 29 COPD patients without ACD,
matched for sex, age, height, FEV₁ and current smoking status, re-
presented the controls. ACD was defined by the presence of a low Hb
concentration (Hb <13 g/dl for males and <12 g/dl for females)
among patients in whom any other potential cause of anemia had
been excluded based on medical history and laboratory results and
was confirmed by the coexistence of a normal or high serum fer-
reritin concentration (>30 ng/ml), a low transferrin saturation rate
(>15 and <50%), low total iron-binding capacity (TIBC; <250 mg/
dl) and normal folate levels [2, 15–17]. Since low B₉ levels occur in
about 10–15% of the elderly but cause anemia only in 1–2%, those
patients with low B₉ levels were excluded only when they present-
ed macrocytosis [18]. Patients with a history of a malignancy or
hematologic disorders, inflammatory bowel disease, acute or
chronic infections, systemic or autoimmune disorders, thyroid
disease, liver cirrhosis, heart failure (ejection fraction <55%), renal
impairment (glomerular filtration rate <60 ml/min/1.73 m²) [19],
gastrointestinal or other hemorrhage, blood transfusion within the
last 3 months or mental impairment were excluded. Patients with
medical conditions which are contraindications to exercise testing
according to the American Thoracic Society/American College of
Chest Physicians guidelines [20], such as acute myocardial infar-
c tion, unstable angina, uncontrolled arrhythmias causing symp-
toms, orthopedic impairment limiting exercise capacity and room
air desaturation <85% at rest, were also excluded.

Study Procedures

During the initial (baseline) visit, all patients with a known or
potential COPD diagnosis gave a detailed medical history and
underwent physical examination and lung function testing 15
min after albuterol administration. All stable COPD patients un-
derwent peripheral venous blood sampling to determine full
blood count, serum levels of urea, creatinine, liver transaminases,
total protein (albumin and globulin), vitamin B₁₂, folate, iron, fer-
reritin and TIBC. In approximately 12% of patients, serum levels
of thyroid hormones were also tested due to clinical suspicion of
thyroid disease. Transferrin saturation was calculated using the
following equation: (serum iron/TIBC) × 100 [15]. Patients who
were found to have ACD visited the outpatient clinic within 2
weeks from the baseline visit and performed a physician-superv-
sed maximum CPET on a cycle ergometer; controls underwent
the same protocol within a month. The institution’s bioethics
committee approved the protocol, and all participants gave their
informed consent.

Measurements

Spirometry

Complete lung function testing, including measures of lung
volume, inspiratory capacity, diffusion capacity and expiratory
flow, was performed using standard spirometric techniques
(MasterScreen PFT, Jaeger) [21]. All studies were conducted at an
altitude of 500 m.

Exercise Testing

Maximum CPET was performed under continuous monitor-
ing of pulse oximetry, heart rate (HR), arterial pressure and a 12-
deal electrocardiogram [22]. After 3 min of rest, patients per-
formed 3 min of unloaded pedaling at 60 rpm, followed by a ramp
protocol with the work rate (WR) increasing by 10–15 W/min un-
til the subject reached his or her symptom-limited maximum [23].
The ramp protocol was personalized for each patient with the aim
of reaching maximum exercise in about 10–12 min. All studies
were conducted in room air.
Exercise parameters and gas exchange values were collected breath-by-breath and averaged over 10-second intervals [23] using the cardiopulmonary metabolic cart software from Medical Graphics. Minute ventilation (V_E), tidal volume (V_T), respiratory rate, oxygen uptake (VO_2) and end-tidal carbon dioxide were measured directly, while the anaerobic threshold (AT), ventilatory equivalent for carbon dioxide at the AT and oxygen pulse (VO_2/HR) were calculated using previously described techniques [23, 24]. Maximum voluntary ventilation was calculated as $FEV_1 \times 40$, and breathing reserve as $FEV_1 \times 40$ minus maximum V_E [23].

Statistical Analysis
Statistical analysis was performed using the Statistical Package for Social Sciences version 17 for Windows XP. The normal predicted values for pulmonary function testing (PFT) and CPET parameters were derived from standard equations [20, 23, 25]. PFT and CPET parameters are presented as means ± standard deviation (SD) or as mean percent predicted ± SD.

The sample size of the case-control study was calculated with peak VO$_2$ as the primary variable. The study was designed to have 80% power to detect a difference in peak VO$_2$ of 2.2 ml/kg/min between the two groups, and group size was calculated as $n = 30$. Data distribution was assessed using the Kolmogorov-Smirnov test of normality. Between-group comparisons were performed with either Student’s t test for independent samples or the Mann-Whitney U test, depending on the normality or not of the distribution of each variable. Pearson’s correlation coefficient r and Spearman’s rho were used to investigate correlations between Hb, CPET parameters and Medical Research Council (MRC) dyspnea scale score, depending on the normality of their distribution. A level of $p < 0.05$ was considered statistically significant.

Results
The study flowchart is presented in figure 1. From the initial cohort of 1,171 subjects who visited the outpatient clinics, we originally identified 315 COPD patients with stable disease, 283 of whom provided consent and formed the original population (223 males, 60 females; mean age 60.31 ± 5.34 years; FEV_1 46.94 ± 6.12% predicted). Twenty-nine patients from this population fulfilled both laboratory and clinical criteria for ACD; therefore, the prevalence of ACD among stable COPD outpatients was 10.24%. The characteristics of the anemic and nonanemic COPD patients are presented in table 1. Patients with ACD were older, had lower FEV_1 and presented with more severe disease, according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification [26], compared to the patients without ACD. Moreover, the proportion of males was significantly higher in the group of ACD patients. No difference was noted in weight, body mass index, smoking status, pack-years of smoking, arterial oxygen partial pressure or the proportion of patients who received long-term oxygen treatment between anemic and nonanemic patients. The Hb level for anemic patients was 12.19 ± 0.66 g/dl, and according to anemia severity classification systems [27, 28], all patients had mild anemia, i.e. Hb concentration >10 g/dl. Anemia was normocytic and normochromic in 27 patients (25 males, 2 females), while the remaining 2 (males) had microcytic...
and hypochromic anemia. The 2 female patients had a mean Hb concentration of 11.65 ± 0.07 g/dl. Due to the small proportion of females, there was no separate analysis of the patient characteristics by gender.

Two of the 29 COPD patients with ACD were not included in the case-control study because in these patients CPET was prematurely terminated due to a hypertensive crisis (1 male patient) and uncontrolled arrhythmia (1 male patient). Therefore, in the second part of this study, the final population consisted of 27 cases (COPD patients with ACD) and 27 matched controls (COPD patients without ACD), all of whom completed the maximal CPET.

The demographic and clinical characteristics and the PFT parameters of the cases and the controls are presented in tables 2 and 3, respectively. The controls were selected to have similar gender, age, height, FEV\textsubscript{1} and smoking status to the 27 cases. No difference was found in the remaining PFT parameters, COPD severity according to the GOLD classification [26], pack-years of smoking, the proportion of patients who received long-term oxygen treatment and arterial blood gas analysis parameters between the two groups. However, the controls had significantly higher weight and body mass index compared to the cases.

Exercise capacity parameters for the two groups are presented in table 4. Five patients (3 anemic and 2 non-anemic) completed maximal CPET without reaching the AT. Overall, there was a negative impact of anemia on exercise capacity. Peak VO\textsubscript{2}, peak WR, WR at the AT, peak VO\textsubscript{2}/HR and VO\textsubscript{2}/HR at the AT were significantly lower among cases compared to controls. There was also a trend for a lower absolute peak VO\textsubscript{2} value (p = 0.072) and a lower AT (p = 0.062) in the cases. None of the exercise parameters indicative of respiratory limitation (breathing reserve, peak respiratory rate, maximum V\textsubscript{E}, maximum V\textsubscript{T}, ratio of V\textsubscript{T} at peak exercise to inspiratory capacity and ratio of V\textsubscript{E} at peak exercise to maximum voluntary ventilation) differed between the two groups.

Furthermore, a negative effect of low Hb levels on breathlessness was noted. Although Hb concentration was not correlated to the MRC dyspnea score, the cases...
had a significantly higher dyspnea scale score than the controls (2.78 ± 0.44 vs. 2.07 ± 0.55; p < 0.001).

Investigating for potential associations between Hb levels and CPET parameters, we noted intermediate correlations between Hb concentration and WR at the AT (r = 0.432, p = 0.002), peak VO$_2$/HR (r = 0.412, p = 0.003), VO$_2$/HR at the AT (r = 0.431, p = 0.004) and peak VO$_2$ (r = 0.436, p = 0.001). In contrast, no correlation was evident between Hb values and any of the exercise parameters which reflect respiratory limitation.

Discussion

The present study is the first to examine the prevalence of ACD in a population of stable COPD patients using a combination of clinical and laboratory criteria. Approximately 1 out of 10 stable COPD patients had ACD. This study is also the first to investigate the impact of ACD on exercise capacity, utilizing CPET. Exercise capacity was significantly lower and the MRC dyspnea score was significantly higher in ACD patients compared to controls.

At the time of this writing, a few studies had evaluated the prevalence of anemia among COPD outpatients, but their results vary significantly. The highest frequency of anemia was noted in a study by Halpern et al. [9], where 21% of elderly COPD outpatients presented with low Hb levels (<13 g/dl for males and <12 g/dl for females); however, all patients were over 65 years of age, and significant causes of anemia, such as infectious diseases and connective tissue disorders, were not excluded. Cote et al. [12] estimated the prevalence of anemia among stable COPD patients to be 17%, but this percentage referred to anemia...

Table 2. Demographic and clinical characteristics of cases and controls

<table>
<thead>
<tr>
<th></th>
<th>Cases (n = 27)</th>
<th>Controls (n = 27)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>25 (92.59%)</td>
<td>25 (92.59%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Female</td>
<td>2 (7.41%)</td>
<td>2 (7.41%)</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>64.82 ± 8.01</td>
<td>65.33 ± 7.24</td>
<td>0.741</td>
</tr>
<tr>
<td>Height, cm</td>
<td>167.21 ± 2.13</td>
<td>168.89 ± 5.57</td>
<td>0.537</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>72.16 ± 14.02</td>
<td>83.33 ± 14.18</td>
<td>0.003</td>
</tr>
<tr>
<td>Body mass index, kg/m2</td>
<td>25.32 ± 4.72</td>
<td>29.19 ± 4.18</td>
<td>0.003</td>
</tr>
<tr>
<td>Hb, g/dl</td>
<td>12.15 ± 0.72</td>
<td>14.57 ± 0.75</td>
<td><0.001</td>
</tr>
<tr>
<td>MCV, fl</td>
<td>87.01 ± 8.06</td>
<td>89.98 ± 4.13</td>
<td>0.071</td>
</tr>
<tr>
<td>MCH, pg/cell</td>
<td>28.04 ± 2.98</td>
<td>29.77 ± 1.63</td>
<td>0.101</td>
</tr>
<tr>
<td>MCHC, g/dl</td>
<td>32.18 ± 1.66</td>
<td>32.99 ± 0.84</td>
<td>0.099</td>
</tr>
<tr>
<td>COPD severity according to GOLD [26]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate (stage II)</td>
<td>6 (22.22%)</td>
<td>7 (25.92%)</td>
<td>0.632</td>
</tr>
<tr>
<td>Severe (stage III)</td>
<td>12 (44.45%)</td>
<td>11 (40.75%)</td>
<td></td>
</tr>
<tr>
<td>Very severe (stage IV)</td>
<td>9 (33.33%)</td>
<td>9 (33.33%)</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoked</td>
<td>2 (7.41%)</td>
<td>2 (7.41%)</td>
<td>0.711</td>
</tr>
<tr>
<td>Current smokers</td>
<td>6 (22.22%)</td>
<td>5 (18.52%)</td>
<td></td>
</tr>
<tr>
<td>Ex-smokers</td>
<td>19 (70.37%)</td>
<td>20 (74.07%)</td>
<td></td>
</tr>
<tr>
<td>Pack-years</td>
<td>62.98 ± 27.33</td>
<td>65.34 ± 25.41</td>
<td>0.695</td>
</tr>
<tr>
<td>LTOT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8 (29.63%)</td>
<td>6 (22.22%)</td>
<td>0.101</td>
</tr>
<tr>
<td>No</td>
<td>19 (70.37%)</td>
<td>21 (77.78%)</td>
<td></td>
</tr>
<tr>
<td>PO$_2$, mm Hg</td>
<td>66.82 ± 7.20</td>
<td>68.76 ± 6.95</td>
<td>0.252</td>
</tr>
<tr>
<td>PCO$_2$, mm Hg</td>
<td>40.12 ± 5.01</td>
<td>41.95 ± 3.97</td>
<td>0.107</td>
</tr>
<tr>
<td>pH</td>
<td>7.41 ± 0.03</td>
<td>7.41 ± 0.02</td>
<td>0.500</td>
</tr>
</tbody>
</table>

Values represent numbers of patients or means ± SD, as appropriate. MCV = Mean corpuscular (erythrocyte) volume; MCH = mean corpuscular Hb; MCHC = mean corpuscular Hb concentration; LTOT = long-term oxygen treatment; PO$_2$ = oxygen partial pressure; PCO$_2$ = carbon dioxide partial pressure.
of all causes. In the only previous study that attempted to make a pathophysiologic connection between COPD, anemia and inflammation [10], the prevalence of anemia was 13%; however, apart from Hb concentration, no other laboratory parameter was used to diagnose ACD, and the renal function of the patients was not determined. The present study is the only one which uses a combination of clinical and laboratory parameters to indicate that ACD occurs frequently in COPD and could be present in approximately 10% of stable COPD patients.

Anemia has been repeatedly associated with reduced exercise capacity in patients with chronic kidney disease [29, 30], chronic heart failure [31, 32] and cancer [33, 34]. Although the underlying pathophysiologic mechanisms are complex, the role of compromised oxygen delivery to the mitochondria seems crucial. The oxygen-carrying capacity of the blood depends directly on the level of Hb [12], and in normal individuals, 15 g/dl of Hb carry approximately 21 ml of oxygen per 100 ml of blood [35]. In these subjects, a 3 g/dl decrease in Hb levels would result in a reduction of the total oxygen-carrying capacity by 4/100 ml; this effect may be more intense in patients with respiratory disorders, since the saturation of Hb is unusually abnormal. Peak oxygen uptake equals cardiac output \(\times \) arteriovenous \(\Delta O_2 \) difference [31], so it has been suggested that for a given increase in cardiac output, the anemic patient, who has a decreased arterial \(\Delta O_2 \) concentration, will have a lower peak \(\text{VO}_2 \). Furthermore, when the arterial oxygen content is low, the diffusion gradient of oxygen from the blood to the mitochondria decreases more rapidly, leading to early anaerobic metabolism [23].

The present study confirms the above hypotheses. Anemic patients had lower peak \(\text{VO}_2 \) and lower \(\text{VO}_2 /HR \) (both at the AT and at peak exercise) and achieved lower WR compared to the nonanemic controls, while there was also a trend for a lower AT. In the only previous study that evaluated the impact of anemia on exercise capacity, low Hb levels were a predictor of reduced 6-min walk distance among COPD patients [12]; the present study confirms these results and demonstrates the negative effect of ACD on numerous exercise parameters.

Breathlessness is a common symptom among patients with anemia. In the study of Cote et al. [12], anemic COPD patients had a significantly higher MRC dyspnea score and anemia was an independent predictor of increased dyspnea. The present study showed that the severity of dyspnea differed significantly between COPD patients with and without ACD. It has been suggested that the early onset of the AT, resulting in lactate production and metabolic acidosis, could be a cause of high ven-

Table 3. PFT parameters among cases and controls

<table>
<thead>
<tr>
<th></th>
<th>Cases (n = 27)</th>
<th>Controls (n = 27)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV(1) liters</td>
<td>1.18 ± 0.32</td>
<td>1.21 ± 0.41</td>
<td>0.881</td>
</tr>
<tr>
<td>% predicted</td>
<td>42.30 ± 9.98</td>
<td>42.76 ± 12.83</td>
<td>0.827</td>
</tr>
<tr>
<td>FVC liters</td>
<td>2.34 ± 0.74</td>
<td>2.73 ± 0.97</td>
<td>0.108</td>
</tr>
<tr>
<td>% predicted</td>
<td>67.88 ± 18.08</td>
<td>71.63 ± 19.61</td>
<td>0.137</td>
</tr>
<tr>
<td>FEV(_1)/FVC</td>
<td>48.94 ± 6.04</td>
<td>47.93 ± 13.53</td>
<td>0.726</td>
</tr>
<tr>
<td>FEF(25) liters</td>
<td>1.31 ± 0.51</td>
<td>1.58 ± 1.07</td>
<td>0.252</td>
</tr>
<tr>
<td>% predicted</td>
<td>19.31 ± 7.63</td>
<td>21.19 ± 12.98</td>
<td>0.326</td>
</tr>
<tr>
<td>FEF(50) liters</td>
<td>0.58 ± 0.28</td>
<td>0.56 ± 0.23</td>
<td>0.729</td>
</tr>
<tr>
<td>% predicted</td>
<td>14.62 ± 6.96</td>
<td>13.20 ± 5.07</td>
<td>0.400</td>
</tr>
<tr>
<td>FEF(75) liters</td>
<td>0.22 ± 0.09</td>
<td>0.23 ± 0.12</td>
<td>0.832</td>
</tr>
<tr>
<td>% predicted</td>
<td>16.49 ± 7.34</td>
<td>15.37 ± 8.43</td>
<td>0.606</td>
</tr>
<tr>
<td>FEF(50) liters</td>
<td>3.27 ± 1.26</td>
<td>3.04 ± 1.87</td>
<td>0.605</td>
</tr>
<tr>
<td>% predicted</td>
<td>42.74 ± 14.89</td>
<td>40.39 ± 21.32</td>
<td>0.641</td>
</tr>
<tr>
<td>TLC liters</td>
<td>6.05 ± 1.54</td>
<td>6.63 ± 1.12</td>
<td>0.261</td>
</tr>
<tr>
<td>% predicted</td>
<td>96.09 ± 23.97</td>
<td>102.45 ± 13.53</td>
<td>0.258</td>
</tr>
<tr>
<td>FRC liters</td>
<td>4.22 ± 1.23</td>
<td>4.19 ± 0.98</td>
<td>0.665</td>
</tr>
<tr>
<td>% predicted</td>
<td>122.79 ± 35.64</td>
<td>119.98 ± 27.28</td>
<td>0.597</td>
</tr>
<tr>
<td>VC liters</td>
<td>2.60 ± 0.80</td>
<td>2.96 ± 0.97</td>
<td>0.159</td>
</tr>
<tr>
<td>% predicted</td>
<td>71.02 ± 19.99</td>
<td>76.47 ± 19.56</td>
<td>0.245</td>
</tr>
<tr>
<td>IC liters</td>
<td>2.20 ± 0.59</td>
<td>2.15 ± 0.81</td>
<td>0.131</td>
</tr>
<tr>
<td>% predicted</td>
<td>75.13 ± 23.75</td>
<td>73.51 ± 22.42</td>
<td>0.101</td>
</tr>
<tr>
<td>RV liters</td>
<td>3.35 ± 1.11</td>
<td>3.62 ± 0.75</td>
<td>0.332</td>
</tr>
<tr>
<td>% predicted</td>
<td>143.22 ± 47.50</td>
<td>149.72 ± 32.40</td>
<td>0.583</td>
</tr>
<tr>
<td>T(_{LCO}) mmol·min(^{-1})·kPa(^{-1})</td>
<td>2.10 ± 0.67</td>
<td>2.41 ± 1.04</td>
<td>0.222</td>
</tr>
<tr>
<td>% predicted</td>
<td>63.78 ± 21.69</td>
<td>70.54 ± 15.29</td>
<td>0.131</td>
</tr>
<tr>
<td>T(_{LCCO}) mmol·min(^{-1})·kPa(^{-1})</td>
<td>2.77 ± 1.13</td>
<td>2.28 ± 0.63</td>
<td>0.337</td>
</tr>
<tr>
<td>% predicted</td>
<td>72.18 ± 15.22</td>
<td>64.69 ± 13.24</td>
<td>0.192</td>
</tr>
<tr>
<td>K(_{CO}) mmol·min(^{-1})·kPa(^{-1})·l(^{-1})</td>
<td>0.52 ± 0.33</td>
<td>0.56 ± 0.27</td>
<td>0.214</td>
</tr>
<tr>
<td>% predicted</td>
<td>57.14 ± 34.79</td>
<td>58.57 ± 17.49</td>
<td>0.881</td>
</tr>
<tr>
<td>K(_{CCO}) mmol·min(^{-1})·kPa(^{-1})·l(^{-1})</td>
<td>0.60 ± 0.26</td>
<td>0.52 ± 0.23</td>
<td>0.331</td>
</tr>
<tr>
<td>% predicted</td>
<td>61.54 ± 19.16</td>
<td>55.07 ± 22.04</td>
<td>0.231</td>
</tr>
<tr>
<td>(V_A) liters</td>
<td>4.28 ± 1.28</td>
<td>4.38 ± 0.85</td>
<td>0.634</td>
</tr>
</tbody>
</table>

FVC = Forced vital capacity; FEF = forced expiratory flow; PEF = functional residual capacity; TLC = total lung capacity; FRC = residual volume; T\(_{LCO}\) = carbon monoxide transfer factor; T\(_{LCCO}\) = carbon monoxide transfer factor corrected for Hb concentration; K\(_{CO}\) = carbon monoxide transfer coefficient; K\(_{CCO}\) = carbon monoxide transfer coefficient corrected for Hb concentration; \(V_A\) = alveolar ventilation.

Downloaded by: 54.191.40.80 - 9/7/2017 12:55:39 PM
Table 4. CPET parameters in cases and controls, separately and combined

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total population (n = 54)</th>
<th>Cases (n = 27)</th>
<th>Controls (n = 27)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak VO₂, ml/kg-min</td>
<td>16.77 ± 4.10</td>
<td>16.03 ± 3.87</td>
<td>17.82 ± 3.98</td>
<td>0.078</td>
</tr>
<tr>
<td>Peak VO₂, % predicted</td>
<td>65.40 ± 15.76</td>
<td>59.54 ± 17.17</td>
<td>71.26 ± 11.85</td>
<td>0.005</td>
</tr>
<tr>
<td>AT, ml/kg-min</td>
<td>13.30 ± 3.20</td>
<td>12.94 ± 2.72</td>
<td>13.61 ± 3.58</td>
<td>NS</td>
</tr>
<tr>
<td>AT, % predicted</td>
<td>52.16 ± 13.02</td>
<td>48.48 ± 15.16</td>
<td>55.42 ± 9.99</td>
<td>0.062</td>
</tr>
<tr>
<td>Peak WR, W</td>
<td>76.75 ± 28.68</td>
<td>67.04 ± 24.86</td>
<td>86.11 ± 29.42</td>
<td>0.014</td>
</tr>
<tr>
<td>Peak WR, % predicted</td>
<td>62.10 ± 22.02</td>
<td>54.94 ± 21.42</td>
<td>68.72 ± 20.81</td>
<td>0.023</td>
</tr>
<tr>
<td>WR at AT, W</td>
<td>58.06 ± 22.40</td>
<td>49.81 ± 18.12</td>
<td>64.73 ± 23.62</td>
<td>0.021</td>
</tr>
<tr>
<td>Peak VO₂/HR, ml/beat</td>
<td>9.60 ± 2.60</td>
<td>8.81 ± 1.98</td>
<td>10.42 ± 2.94</td>
<td>0.023</td>
</tr>
<tr>
<td>Peak VO₂/HR, % predicted</td>
<td>75.43 ± 18.74</td>
<td>69.07 ± 17.26</td>
<td>82.04 ± 18.22</td>
<td>0.010</td>
</tr>
<tr>
<td>VO₂/HR at AT, ml/beat</td>
<td>8.74 ± 2.33</td>
<td>7.95 ± 1.65</td>
<td>9.39 ± 2.62</td>
<td>0.044</td>
</tr>
<tr>
<td>Peak HR, % predicted</td>
<td>85.50 ± 10.69</td>
<td>85.14 ± 10.42</td>
<td>85.87 ± 11.14</td>
<td>NS</td>
</tr>
<tr>
<td>PETCO₂ at AT</td>
<td>36.64 ± 5.49</td>
<td>35.41 ± 6.27</td>
<td>37.72 ± 4.56</td>
<td>NS</td>
</tr>
<tr>
<td>VE/VCO₂ at AT</td>
<td>35.23 ± 6.70</td>
<td>36.82 ± 7.74</td>
<td>33.84 ± 5.36</td>
<td>NS</td>
</tr>
<tr>
<td>Vₑ max, liters</td>
<td>43.19 ± 13.61</td>
<td>41.34 ± 13.33</td>
<td>44.94 ± 13.74</td>
<td>NS</td>
</tr>
<tr>
<td>Vₑ max, liters</td>
<td>1.28 ± 0.36</td>
<td>1.24 ± 0.06</td>
<td>1.31 ± 0.07</td>
<td>NS</td>
</tr>
<tr>
<td>Vₑ max/IC</td>
<td>0.08 ± 0.62</td>
<td>0.82 ± 0.26</td>
<td>0.74 ± 0.85</td>
<td>NS</td>
</tr>
<tr>
<td>Vₑ max/MVV</td>
<td>0.91 ± 0.15</td>
<td>0.89 ± 0.12</td>
<td>0.92 ± 0.03</td>
<td>NS</td>
</tr>
<tr>
<td>BR, liters</td>
<td>4.49 ± 6.84</td>
<td>5.37 ± 0.95</td>
<td>3.64 ± 1.60</td>
<td>NS</td>
</tr>
<tr>
<td>Peak RR, breaths/min</td>
<td>35.53 ± 6.67</td>
<td>35.74 ± 1.45</td>
<td>35.31 ± 1.13</td>
<td>NS</td>
</tr>
<tr>
<td>Resting SaO₂, %</td>
<td>95.06 ± 2.42</td>
<td>94.88 ± 2.57</td>
<td>95.30 ± 2.06</td>
<td>NS</td>
</tr>
<tr>
<td>Peak SaO₂, %</td>
<td>91.29 ± 5.62</td>
<td>90.88 ± 5.95</td>
<td>91.74 ± 5.34</td>
<td>NS</td>
</tr>
</tbody>
</table>

PETCO₂ = End-tidal carbon dioxide; VE/VCO₂ = ventilatory equivalent for carbon dioxide; IC = inspiratory capacity; MVV = maximum voluntary ventilation; BR = breathing reserve; RR = respiratory rate; SaO₂ = oxygen saturation; NS = not significant.

Ventilatory drive and increased dyspnea [12, 23] due to the stimulation of peripheral chemoreceptors [36]. This hypothesis needs to be investigated further.

While the presence of anemia is associated with adverse outcomes, its correction has proven beneficial in several chronic disease states. Correction of anemia has been associated with improved renal function, exercise tolerance and New York Heart Association class in heart failure patients and with better quality of life, exercise capacity and cognitive function in chronic renal failure patients [37–40]. The correction of anemia with blood transfusion in COPD patients resulted in the reduction of Vₑ and work of breathing [41], while in another study, 5 COPD patients were successfully weaned from mechanical ventilation after their anemia was treated [42]. Although investigating the impact of anemia correction was not the aim of this study, the results imply that hematocrit normalization may be beneficial for COPD patients. However, the therapeutic approach to ACD remains controversial [2], and prospective, large-scale clinical trials are necessary in order to identify which patients will benefit from the use of blood transfusions, iron supplementation, erythropoietin or anti-inflammatory agents.

In the current study, special attention was paid to matching COPD cases and controls with regard to most of the known parameters that could affect their exercise performance. In a previous, cross-sectional study, the anemic COPD patients were older and had a higher disease burden than the nonanemic ones, and these characteristics had probably affected their exercise performance. In a previous, cross-sectional study, the proportion of female patients was small, as also seen in previous studies of anemia among COPD patients [37–40]. The significantly lower prevalence of COPD in females in Greece [43, 44] and the lower frequency of anemia in women >65 years old compared to men of the same age [45] are possible explanations for this phenomenon. However, previous studies that investigated the impact of anemia on elderly females in non-COPD settings...
had similar results, so the possibility that the results may not be generalized to both genders is remote [46, 47]. Further, this COPD population which was followed up at a major urban hospital had more severe disease than patients in a primary care setting [48], so ACD might not be as frequent in the general COPD population.

In conclusion, this is the first study to establish that COPD can be accompanied by ACD, by utilizing a combination of clinical and laboratory parameters. The careful case-control comparison has shown that there is a negative impact of ACD on both exercise capacity and the severity of the dyspnea score. Future studies are needed in order to investigate the potential role of inflammatory mediators on the suppression of erythropoiesis in patients with COPD and to evaluate the possible therapeutic approaches in this population.

Financial Disclosure and Conflicts of Interest

None to declare for any of the authors.

References

Anemia of Chronic Disease and Exercise in COPD

Erratum

The authors of the article ‘Anemia of Chronic Disease in Chronic Obstructive Pulmonary Disease: A Case-Control Study of Cardiopulmonary Exercise Responses’, published in *Respiration* 2011;82:237–245, wish to correct the following error on page 238, in the Material and Methods section, first paragraph of Study Population, in the 5th line: the phrase ‘December 2009’ should be replaced by ‘June 2009’.

The correct sentence should read as follows:

‘The relevant population consisted of consecutive, clinically stable patients with COPD who visited the Respiratory Failure Unit and the Pulmonary Clinic of the ‘G. Papanikolaou’ Hospital (Thessaloniki, Greece) as outpatients between June 2009 and May 2010.’