Role of Endorectal Magnetic Resonance Spectroscopic Imaging in Two Different Gleason Scores in Prostate Cancer

Rajakumar Nagarajan Daniel Margolis Tim McClure Steve Raman
M. Albert Thomas

Department of Radiological Sciences, University of California, Los Angeles, Calif., USA

Introduction

Prostate cancer is the most common noncutaneous malignancy and the second leading cause of death from cancer, after lung cancer, in American men [1]. As with any cancer, if it is advanced or left untreated in early stages, it can eventually spread through the blood and lymph network to other organs. Fortunately, prostate cancer tends to be slow-growing compared to other cancers. The term ‘grade’ describes how closely the tumor resembles normal prostate tissue. The most widespread way of grading prostate cancer is called the Gleason system and this system uses a Gleason score (GS) of 2–10 to grade prostate cancer, where higher grades represent more aggressive tumors [2–4]. The GS offers a good clue of the tumor’s behavior as the prostate tumor with a low GS is likely to be slow-growing, while one with a high score is more likely to grow aggressively or to have already spread outside the prostate (metastasized).

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) enable anatomic and metabolic evaluation of the prostate gland. The MRSI is a powerful technique for local evaluation of prostate cancer growth and aggressiveness. MRSI facilitates the demonstration of normal and altered tissue metabolism,
Cancer MR Spectroscopy of Human Prostate

utilizes the point-resolved spectroscopy sequence [5], with spectral spatial pulses for lipid suppression [6–8]. In particular, endorectal MRI and MRSI have shown considerable promise in the evaluation of tumor extent and aggressiveness in patients with biopsy-proven prostate cancer [9–11] and might be valuable in tumor diagnosis.

Cancer tissue can appear in any place in the prostate, and so the use of a three-dimensional (3D) MRSI method to cover the whole prostate is necessary [12]. MRI may improve the staging of prostate cancer compared with clinical evaluation alone, computer tomography, or transrectal ultrasound, as it allows simultaneous and detailed assessment of prostate, periprostatic, and pelvic anatomy. Earlier reports suggesting a limited applicability of MRI did not incorporate MRSI or the use of endorectal coils, and they used sequences and equipment that were not up to current standards. The value of MRSI to detect and localize cancer in the transition zone of the prostate has been reported [13, 14]. Prostate cancer has been shown to be characterized by a decreased signal of citrate (Cit) and an increased signal of choline (Cho)-containing compounds. Therefore, a commonly used marker for cancer tissue is the ratio of \([\text{Cho} + \text{creatinine (Cr)}]/\text{Cit}\). The purpose of the study was to record 3D MRSI and to compare metabolite ratios using spectroscopic imaging data between 2 different Gleason scores \((3 + 3 = 6 \text{ vs. } 4 + 3 = 7)\).

Materials and Methods

The entire protocol was approved by the Institutional Review Board, and informed consent was obtained from each patient. Patient selection was limited to GS 6 or 7 and prostatectomy. Fourteen men \((n = 7 \text{ with a GS (3 + 3) and } n = 7 \text{ with a GS (4 + 3)}\) underwent radical retropubic prostatectomy, and their pathologies were subsequently analyzed. These patients were scanned using a 1.5-tesla Siemens (Siemens Medical Solution, Erlangen, Germany) MRI scanner with an endorectal coil. The protocol combining MRI and MRSI was performed at least 8 weeks after transrectal ultrasound-guided sextant biopsy. MRI included T2-weighted images acquired with a fast spin-echo sequence with: repetition time (TR) = 3,800 ms, effective echo time (TE) = 101 ms, slice thickness = 3 mm, field of view = 140 mm, and matrix size = 256 × 256. The ages of the patients ranged from 52 to 78 years, and the patients had 2 different GS: 3 + 3 (mean ± SD, 56.8 ± 7.9 years) and 4 + 3 (mean ± SD, 64.8 ± 8.6 years). The mean and standard deviation of prostate-specific antigen value for the patients with a GS of 3 + 3 was 7.2 ± 2.5 ng/ml. For patients with a GS of 4 + 3, it was 13.5 ± 3.1 ng/ml.

MRSI was performed in all patients, including water- and fat-suppressed acquisition. The parameters were: TR/TE/Avg/BW = 700 ms/120 ms/6 ms/1,300 Hz, and 512 spectral data points, where TR, TE, Avg, and BW represent repetition time, echo time, averages and spectral bandwidth. The field of view was \(80 \times 80 \times 80 \text{ mm}^3\) with a raw matrix size of \(512 \times 12 \times 12 \times 12\). A point-resolved spectroscopy pulse sequence was used to acquire the proton MR spectra from a volume of interest of \(55 \times 40 \times 40 \text{ mm}^3\). Outer volume lipid suppression was achieved using eight 3-cm slab saturation pulses around the volume of interest. Water and fat resonances were suppressed using two 12.6-ms dual-frequency selective MEGA pulses [15] with crusher gradients. A TE of 120 ms was used for optimal Cit detection.

The spectroscopic software on the MR scanner provided by the manufacturer was used to evaluate the \((\text{Cho} + \text{Cr})/\text{Cit}\) ratio. For 3D MRSI postprocessing, each spectrum was Fourier transformed, frequency-, phase-, and baseline-corrected, and peaks of Cit, Cho and Cr were subsequently fitted. Hamming filter was used for the MRSI spatial dimensions of the data. For the statistical analysis, the Student t test was used to compare the ratios between different GS, and a p value of less than 0.05 was considered to indicate a significant difference. A radiologist (D.M.) and a physicist (M.A.T.), both with more than 10 years of experience in analyzing prostate endorectal MRI and MRSI data, interpreted the imaging studies using established morphologic and metabolite criteria for the MRI and MRSI evaluation of prostate cancer. The spectroscopist evaluated the MRSI data set and provided the location and number of suspicious voxels to the radiologist, who integrated the MRSI information with the MRI data and provided a final reading for each study. In the decision status for classifying voxels as noncancerous or malignant, the voxels were first broken up according to their GS and noncancerous regions. If the Cit peak was lower than the Cho peak or was undetectable, the voxel was determined to be malignant. If the Cit peak was higher than the Cho peak, the voxel was considered noncancerous for \((\text{Cho} + \text{Cr})/\text{Cit}\) smaller than 0.37 and malignant for \((\text{Cho} + \text{Cr})/\text{Cit}\) greater than 0.37.

Statistical Test

The mean and standard deviation of \((\text{Cho} + \text{Cr})/\text{Cit}\) were calculated. Statistical analysis was conducted using the Student t test between 2 different GS. A value of \(p < 0.05\) was considered to be significant.

Results

The one-dimensional (1D) spectra extracted from the 3D MRSI data recorded in the affected and contralateral area of a 67-year-old prostate cancer patient with a GS of 6 (3 + 3) are shown in figure 1a and b, and the corresponding voxel locations are presented in figure 1c and d. Similarly, the 1D spectra extracted from the 3D MRSI data recorded in the affected and contralateral area of a 70-year-old prostate cancer patient with a GS of 7 (4 + 3) are shown in figure 2a and b. In prostate cancer patients with a GS of \(3 + 3\), the \((\text{Cho} + \text{Cr})/\text{Cit}\) ratios in the affected side were...
0.522 \pm 0.066, 0.377 \pm 0.328 and 0.590 \pm 0.171 in the apex, midgland and base regions, respectively. In contrast, these ratios in the apex, midgland and base regions of the contralateral side were 0.208 \pm 0.074, 0.192 \pm 0.157 and 0.321 \pm 0.157, respectively. On the other hand, these ratios in prostate cancer patients with a GS of 4 + 3 were as follows: 0.303 \pm 0.025, 0.198 \pm 0.142 and 0.360 \pm 0.243 in the contralateral side, as summarized in table 1. There were no statistically significant changes observed in the (Cho + Cr)/Cit ratios with GS. However, a trend was visible, i.e. GS 7 had a higher (Cho + Cr)/Cit ratio compared to GS 6.

Discussion

Endorectal MRI and MRSI facilitate improved diagnosis of prostate cancer in patients with 2 different GS. The ratio of (Cho + Cr)/Cit is capable of distinguishing between healthy and cancerous prostate tissues. MR
spectroscopy of the prostate is a noninvasive approach for
the detection of prostate cancer, and the potential of MR
spectroscopy to identify intraprostatic cancer foci in ad-
inition to MRI with a high sensitivity and specificity has
already been proven in several studies [16, 17]. So far, the
emphasis in MRSI of the prostate was placed on the pe-
ripheral zone [18] resulting from the fact that the signal-
to-noise ratio in the peripheral zone is superior to the
central gland because the endorectal coil is positioned
against the dorsal part of the prostate which contains the
peripheral zone. Seventy percent of tumor nodules are
present in the peripheral zone [19, 20]. As the GS in-
creased, the metabolite ratio of (Cho + Cr)/Cit also elevat-
ed. Numerous investigators have also found elevated Cho
levels in tumors [21–23]. Since these compounds are
anabolites (Cho and phosphocholine) and catabolites
(glycerophosphocholine) of phosphatidylcholine, which
is a major membrane phospholipid, it has been suggested
that the elevated Cho level reflects an elevated cell prolif-
eration rate, and there are some data to support this hy-
pothesis [24]. Even though the metabolite ratio measured
by MRSI did not show statistically significant changes,
there are higher levels of Cho-containing metabolites in
prostate cancers having higher Gleason grades, which
agrees with a previous study [25]. There is an overlap be-
tween MRSI parameters at various GS levels, which may
reflect methodological and physiological variations.

Conclusion

Our study showed that the metabolite ratio of (Cho +
Cr)/Cit in MRSI measurement of prostate cancer in-
creased with an increase of these 2 GS (GS 3 + 3 and GS
4 + 3). MRSI has potential in noninvasive evaluation of
prostate cancer aggressiveness.

Acknowledgement

This work was supported by an idea award from the US Army
Prostate Cancer Research Program (No. W81XWH-04-1-0885).

Fig. 2. Spectroscopic imaging of a 70-year-
old prostate cancer patient with a GS 4 + 3.

a, b The 1D spectra extracted from the
3D MRSI data recorded in the affected and
contralateral area. c, d The corresponding
voxel locations.