The Effect of HMGB1, a Damage-Associated Molecular Pattern Molecule, on Polymorphonuclear Neutrophil Migration Depends on Its Concentration

Florence Berthelot Lakhdar Fattoum Sarah Casulli Joël Gozlan Vincent Maréchal Carole Elbim
Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 872 et Université Paris Descartes, UMR S 872, INSERM, Paris, France

Key Words
Neutrophils · Alarmin · Chemotaxis · Inflammation

Abstract
Polymorphonuclear neutrophils (PMN) play a key role in host defenses against invading microorganisms but also potentiate inflammatory reactions in case of excessive or misdirected responses. Release of the alarmin high-mobility group box 1 (HMGB1) by cells that die at an inflammatory site may act as an alert signal for the immune system. We studied the effect of HMGB1 on human PMN migration, using whole-blood samples to avoid cell activation associated with isolation procedures. HMGB1 50–100 ng/ml reduced baseline PMN migration as well as formyl-methionyl-leucyl-phenylalanine- and IL-8-induced PMN chemotaxis. This inhibitory effect was mediated by the RAGE receptor. In contrast, a higher HMGB1 concentration (5,000 ng/ml) had a chemoattractant effect on PMN through IL-8 production. This effect required the engagement of Toll-like receptors 2 and 4 in addition to the RAGE receptor. The A box component of HMGB1, which antagonizes the endogenous protein, reduced chemotaxis and also strongly inhibited the enhancement of PMN migration observed with the highest HMGB1 concentration. In contrast, the B box, reported to be the active form of HMGB1, exerted a chemoattractant effect. These results strongly point to a key regulatory role of HMGB1 in PMN recruitment to inflammatory tissues. The A box component could potentially serve to inhibit inappropriate PMN recruitment during chronic inflammatory disorders associated with excessive HMGB1 release.

Introduction
Polymorphonuclear neutrophils (PMN) are key components of the first line of defense against microbial pathogens, being rapidly recruited to inflammatory sites in response to a variety of stimuli. Once at their target site, PMN produce reactive oxygen species (ROS), which are essential for bacterial killing and also potentiate inflammatory reactions [1]. PMN are attracted by a variety of molecules, including formyl-methionyl-leucyl-phenylalanine (fMLP), a bacterial peptide, and chemokines such as IL-8, which are released from sites of inflammation or injury [2]. fMLP and IL-8 bind to receptors on PMN, resulting in both G protein-dependent and G protein-independent responses that induce PMN migration along a concentration gradient. This process is tightly controlled, not only to ensure efficient migration to inflammatory sites, but also to prevent aberrant tissue infiltration and
High-mobility group box 1 (HMGB1) is a nuclear protein loosely bound to DNA, which stabilizes nucleosome formation and regulates transcription [3]. HMGB1 is found in all mammalian tissues and is highly conserved among species. HMGB1 consists of a single polypeptide chain of 215 amino acids organized into two DNA-binding regions (the A and B box) and a C-terminal acidic tail. HMGB1 may actively secreted into the extracellular space by activated macrophages, natural killer cells and mature dendritic cells, a process that may require HMGB1 acetylation in the nucleus. HMGB1 is passively released by necrotic but not apoptotic cells, and is thus a key signal of tissue damage. Extracellular HMGB1 may interact with Toll-like receptor (TLR) 2 and TLR4, and/or receptor for advanced glycation end products (RAGE). As a danger signal, HMGB1 would be expected to trigger inflammatory response. This anti-inflammatory program is characterized by cessation of PMN infiltration.

HMGB1 induces a RAGE-mediated increase in PMN migration and regulates transcription of several genes involved in inflammation and tissue repair [4–6]. Structure-function studies have shown that the active cytokine domain of HMGB1 is located in the DNA-binding B box, whereas the A box competes with HMGB1 for binding sites on the surface of activated macrophages and attenuates the biological function of full-length HMGB1; thus, the recombinant A box specifically antagonizes HMGB1 [3, 7].

Although HMGB1 has been reported to stimulate the motility of various cell types such as fibroblasts, dendritic cells, macrophages, smooth muscle cells and tumor cells [for review, see 3], it is unclear whether this includes human PMN. Orlova et al. [8] recently reported that HMGB1 induces a RAGE-mediated increase in PMN migration. However, this latter study used PMN isolated from their blood environment by procedures which may differently modulate cell surface receptor expression and thereby alter cell responses [9].

The aim of the present study was to assess the effect of HMGB1 on PMN migration in whole-blood conditions in order to avoid artifactual activation related to isolation procedures and to more closely reproduce physiological conditions. We also analyzed the respective roles of the A and B box on chemotaxis, cytoskeleton rearrangement and PMN activation status. Finally, we examined the possible involvement of RAGE, TLR2 and TLR4 in the modulation of PMN migration by HMGB1, and investigated relevant transduction pathways.

Materials and Methods

Reagents

The reagents and sources were as follows: fMLP and L-α lysophosphatidylcholine (Sigma-Aldrich); cycloheximide, SB203580, PD98059 and wortmannin (Calbiochem); recombinant human IL-8 and anti-RAGE monoclonal antibody (R&D Systems); ultra-purified LPS from *Escherichia coli* serotype S51 (Invivogen); PE-conjugated anti-CD11b antibody (Dakopatts); 7-aminoactinomycin D (7-AAD), allophycocyanin-conjugated (APC) anti-CD15 antibody, PE-conjugated anti-phosphorylated p38MAPK and ERK1/2 antibodies, purified anti-phospho Akt (S472/S473) antibody; purified anti-L-selectin antibody, and cytometric bead array (CBA) kit (BD Pharmingen); FITC goat anti-mouse antibody (Nordic Immunology); FITC goat anti-rabbit polyclonal antibodies (Cell Signaling Technology); anti-human TLR2 and TLR4 antibodies (eBiosciences); unlabeled phalloidin, Alexa Fluor 488-phalloidin and SYTO16 (Invitrogen); hydroethidine (HE) (Fluka, Buchs, Switzerland); Transwell plates (Corning Costar).

Purification of Recombinant Human HMGB1 and HMGB1 Domains A and B

Recombinant human HMGB1, HMGB1 domain A (residues 1–87) and HMGB1 domain B (residues 85–180) were produced from *Escherichia coli* strain BL21(DE3) pLysS transformed with pET15b-6His-HMGB1 full-length, pET15b-6His-A Box and pET15b-6His-B Box as previously described [10, 11]. The expression vector encoded human HMGB1 protein, domain A and domain B fused to a polyhistidine tag at their N termini. (His)₆-fusion proteins of full-length HMGB1 and of domains A and B were extracted in denaturing conditions, then renatured and affinity-purified on Ni-NTA spin columns as recommended in the Qiagen instruction manual. Contaminating endotoxin was removed with Triton X-114 [10] and full-length HMGB1, domains A and B were tested for endotoxin contamination using the Limulus amebocyte assay. In order to rule out possible denaturation of HMGB1 during protein production, the activity of HMGB1 was assessed in terms of the capacity of HMGB1 to bind to hemicatenated DNA [11, 12] and to stimulate migration of 3T3 mouse fibroblasts [13].

Measurement of PMN Chemotactic Activity

Chemotaxis was measured in Transwell plates (Corning Costar) containing 3-μm pore-size polyvinylpyrrolidone-free polycarbonate filters [14]. The lower well of each chamber received 600 μl of HMGB1 (1–5,000 ng/ml) or advanced glycation end products (AGEs) (1–5,000 ng/ml) diluted in PBS plus 1% human serum albumin. IL-8 at 25 ng/ml and fMLP at 10⁻⁷ M were used as positive chemoattractant controls. Spontaneous migration was measured with PBS plus 1% human serum. The upper well received 100 μl of healthy donor whole blood diluted 1/10 in PBS. The chambers were incubated for 1, 3 or 5 h at 37°C. Samples were stained with APC-anti-CD15 for 15 min, and 450 μl of lysis solution was then added. The total number of PMN added to the upper well and the number of PMN that migrated to the lower well were
HMGB1 Modulates PMN Migration

Measurement of PMN Apoptosis

Apoptosis of PMN in whole blood was quantified by using SYTO16 [17] and a vital dye (7-AAD) [15]. Following initiation of the apoptosis cascade, cells loaded with SYTO16 exhibit a characteristic initial reduction in fluorescence signal intensity which precedes plasma membrane rupture. As cell death processes advance, a further loss of SYTO16 fluorescence coincides with the loss of plasma membrane integrity [17]. Samples were incubated in 24-well tissue culture plates at 37°C with 5% CO₂ for 3 and 24 h with PBS or HMGB1 (1–5,000 ng/ml). Cytokines (10 pg/ml) and LPS (10 ng/ml) were used as pro- and anti-apoptotic controls, respectively [15]. Samples (100 μl) were then washed twice in PBS, incubated on ice with APC-anti-CD15 for 15 min, and then with SYTO16 (20 nM) for 15 min. After dilution in PBS (500 μl), the samples were incubated with 7-AAD at room temperature for 15 min and analyzed immediately by flow cytometry.

Cytokine Production by Blood Cells

Whole-blood PMN were cultured for 1, 3 and 24 h at 37°C with 5% CO₂ in 24-well tissue culture plates (Costar) in RPMI 1640 medium (Sigma-Aldrich). HMGB1 (1–5,000 ng/ml) was added to the culture medium. LPS (20 ng/ml) was used as a positive control. Supernatants were stored at –70°C for no longer than 15 days before assay. IL-8, IL-6, IL-1β and TNF-α were detected simultaneously in supernatants by using the human inflammatory cytokine CBA kit (BD Pharmingen). The CBA working range is 20–5,000 pg/ml for each cytokine.

Flow Cytometry

We used a BD Biosciences LSRII device (Immunocytometry Systems). PMN functions were analyzed with DIVA software. To measure apoptosis in whole blood, PMN were identified on the CD15/SSC dot plot, and 2 × 10⁴ events were counted per sample. In other experiments, forward and side scatter were used to identify the PMN population and to gate out other cells and debris; 10⁴ events were counted per sample. Cytokine levels were analyzed with CBA software (BD Pharmingen).

Statistical Analysis

Data are reported as means ± SEM. Comparisons were based on ANOVA and Tukey’s post hoc test, using Prism 3.0 software (Graph Pad Software).

F-Actin Assay

Whole-blood samples were either kept on ice or incubated with PBS, A box (1–5,000 ng/ml, HMGB1 equivalent) or B box (1–5,000 ng/ml, HMGB1 equivalent) for 1 h. In order to evaluate the effect of A or B box on IL-8- and fMLP-induced changes in adhesion molecule expression, the samples were pretreated with A or B box at various concentrations for 15 min and then with IL-8 (25 ng/ml) or fMLP (10⁻⁷ M) for 45 or 5 min, respectively. Samples (100 μl) were stained at 4°C for 30 min with PE-anti-human CD11b or purified anti-λ- selectin antibodies. To study L-selectin expression, samples were then washed with ice-cold PBS and incubated at 4°C for 30 min with FITC-goat anti-mouse antibody. Erythrocytes were lysed with FACS lysing solution (BD Biosciences) and white blood cells were resuspended in 1% paraformaldehyde-PBS and analyzed by flow cytometry. Nonspecific antibody binding was determined on cells incubated with the same concentration of an irrelevant antibody of the same isotype.

Measurement of PMN Oxidative Burst

Superoxide anion O₂⁻ production was measured with a flow-cytometric assay derived from the HE oxidation technique [15]: whole-blood samples (500 μl) were loaded for 15 min with HE (1,500 ng/ml) at 37°C and then incubated with PBS, TNF-α (100 U/ml, used as a positive control), A box (1–5,000 ng/ml, HMGB1 equivalent) or B box (1–5,000 ng/ml, HMGB1 equivalent) for 1 h; samples were then treated with PBS or 10⁻⁶ M fMLP for 5 min. Red cells were lysed as described above and white cells were resuspended in 1% paraformaldehyde-PBS.

Determination of Adhesion Molecule Expression at the PMN Surface

Whole-blood samples (1 ml) were incubated at 37°C with PBS, TNF-α (100 U/ml, used as a positive control), A box (1–5,000 ng/ml, HMGB1 equivalent) or B box (1–5,000 ng/ml, HMGB1 equivalent) for 1 h. In order to evaluate the effect of A or B box on IL-8- and fMLP-induced changes in adhesion molecule expression, the samples were pretreated with A or B box at various concentrations for 15 min and then with IL-8 (25 ng/ml) or fMLP (10⁻⁷ M) for 45 or 5 min, respectively. Samples (100 μl) were stained at 4°C for 30 min with PE-anti-human CD11b or purified anti-λ- selectin antibodies. To study L-selectin expression, samples were then washed with ice-cold PBS and incubated at 4°C for 30 min with FITC-goat anti-mouse antibody. Erythrocytes were lysed with FACS lysing solution (BD Biosciences) and white blood cells were resuspended in 1% paraformaldehyde-PBS and analyzed by flow cytometry. Nonspecific antibody binding was determined on cells incubated with the same concentration of an irrelevant antibody of the same isotype.

Statistics

Statistical comparisons were made using one-way ANOVA, followed by Tukey’s post hoc test, using Graph Pad Prism 3.0 software. The level of significance was set at 0.05.
Results

HMGB1 Effects on PMN Migration Depend on the Concentration

We first investigated the effect of HMGB1 (1–5,000 ng/ml) alone on migration of whole-blood PMN incubated for 3 h in Transwell plates. Maximal concentrations of IL-8 (25 ng/ml) and fMLP (10^{-7} M) were used as positive chemoattractant controls. The chambers were incubated for 3 h at 37°C. The results are expressed as the migration rate (number of PMN in the lower well after migration/number of PMN applied to the upper well) × 100. Values are means ± SEM (n = 10, each experiment performed in triplicate). *Significantly different from PBS-HSA (p < 0.05).

PMN migration. The lower well of each chamber received 600 µl of PBS-HSA, HMGB1 (100 ng/ml) or HMGB1 (5,000 ng/ml). The chambers were incubated for 1, 3 or 5 h at 37°C. The results are expressed as the percentage inhibition of PMN migration by HMGB1 100 ng/ml [1 – (migration rate in HMGB1-treated sample/migration rate in PBS-HSA-treated sample)] × 100 or the percentage increase in PMN migration with HMGB1 5,000 ng/ml [(migration rate in HMGB1-treated sample/migration rate in PBS-HSA-treated sample) – 1] × 100. Values are means ± SEM (n = 5, each experiment performed in triplicate). *Significantly different from sample incubated with HMGB1 for 3 h (p < 0.05).

Fig. 1. HMGB1 has opposite effects on PMN migration according to the concentration. **a** Concentration-dependent effect of HMGB1 on PMN migration measured in Transwell plates. The lower well of each chamber received 600 µl of PBS-HSA (1%), and HMGB1 (1–5,000 ng/ml). IL-8 (25 ng/ml) and fMLP (10^{-7} M) were used as positive chemoattractant controls. The chambers were incubated for 3 h at 37°C. The results are expressed as the migration rate (number of PMN in the lower well after migration/number of PMN applied to the upper well) × 100. Values are means ± SEM (n = 10, each experiment performed in triplicate). *Significantly different from PBS-HSA (p < 0.05). **b** Kinetic effect of HMGB1 on PMN migration. The lower well of each chamber received 600 µl of PBS-HSA, HMGB1 (100 ng/ml) or HMGB1 (5,000 ng/ml). The chambers were incubated for 1, 3 or 5 h at 37°C. The results are expressed as the percentage inhibition of PMN migration by HMGB1 100 ng/ml [1 – (migration rate in HMGB1-treated sample/migration rate in PBS-HSA-treated sample)] × 100 or the percentage increase in PMN migration with HMGB1 5,000 ng/ml [(migration rate in HMGB1-treated sample/migration rate in PBS-HSA-treated sample) – 1] × 100. Values are means ± SEM (n = 5, each experiment performed in triplicate). *Significantly different from sample incubated with HMGB1 for 3 h (p < 0.05).
PMN, purified as previously reported [15]. HMGB1-induced modulations of PMN migration were similar whether migration was studied in whole blood or in purified preparations, suggesting a direct effect of HMGB1 on PMN migration. However, the effects were slightly lower with purified PMN than with whole-blood PMN: in purified preparations, HMGB1 (100 ng/ml) induced 32–38% inhibition of PMN migration and the highest HMGB1 concentration induced a 15–21% increase in PMN migration. To minimize cell activation due to isolation procedures and to better mimic physiological conditions, subsequent experiments were performed with PMN in their whole-blood environment.

HMGB1 Modulation of PMN Migration Is Not Related to Altered PMN Viability

Bloodstream PMN have a short half-life, dying physiologically by apoptosis. Apoptotic PMN are nonfunctional. We therefore investigated whether the observed changes in PMN migration were due to modulation of PMN survival. Whole-blood PMN cultured at 37°C died rapidly by apoptosis: about 10 and 70% of cells were SYTOlow+bright after 3 and 24 h, respectively. As previously reported [15], apoptosis was accelerated by cycloheximide (10 μg/ml: 18% of cells were SYTOlow+bright after 3 h) and delayed by LPS (10 ng/ml: 4% of cells were SYTOlow+bright after 3 h) (fig. 2c). The percentage of apoptotic cells in samples incubated with HMGB1 (1–5,000 ng/ml) for 3 h was not different from the PBS control (fig. 2c). Similar results were obtained after 24 h (data not shown).

HMGB1 A and B Box Have Opposite Effects on PMN Migration

We then investigated the involvement of the A and B domains in HMGB1 modulation of PMN migration. The
A box (50–1,000 ng/ml HMGB1 equivalent) significantly decreased PMN random migration (fig. 3a) as well as fMLP- and IL-8-induced chemotaxis (fig. 3c, d). In addition, pretreatment of whole-blood samples with the A box (100 ng/ml HMGB1 equivalent) strongly accentuated the inhibition of PMN migration observed with 100 ng/ml HMGB1 (fig. 3g) and totally suppressed the increase in PMN migration observed with 5,000 ng/ml HMGB1 (fig. 3h). In contrast, high B box concentrations (1,000 and 5,000 ng/ml HMGB1 equivalent) significantly increased PMN migration compared to the PBS-HSA control (fig. 3b), as well as fMLP-induced chemotaxis (fig. 3e).
Together, these data suggested that the B and A box might play key roles in the observed enhancement and inhibition, respectively, of PMN migration by HMGB1.

Fig. 3. Differential effects of A and B box on PMN migration.
a, b A and B box had opposite effects on PMN migration. The lower well of each chamber received 600 μl of PBS-HSA, A box (1–5,000 ng/ml, HMGB1 equivalent) (**a**) or B box (1–5,000 ng/ml, HMGB1 equivalent) (**b**). The chambers were incubated for 1 h at 37°C. The results are expressed as the migration rate calculated as described above. Values are means ± SEM (n = 3, each experiment performed in triplicate). **c, d** A box decreased chemoattractant-induced PMN migration. The lower wells were pretreated with PBS-HSA (1%) or A box (1–5,000 ng/ml, HMGB1 equivalent) for 30 min and then with fMLP (10⁻⁷ M) (**c**) or IL-8 (25 ng/ml) (**d**) for 1 h in Transwell plates at 37°C. The results are expressed as the migration rate calculated as described above. Values are means ± SEM (n = 3, each experiment performed in triplicate). *Significantly different from sample incubated with PBS-HSA (**a, b, g, h**), fMLP (**c, e**) or IL-8 (**d, f**) (p < 0.05).

HMGB1 A and B Box Modulations of PMN Migration Are Associated with Changes in F-Actin Content

F-actin is important for the cytoskeleton rearrangements necessary to induce a migratory phenotype in PMN [18]. We therefore investigated whether the differential effects of the two parts of HMGB1 on PMN migration were associated with parallel changes in F-actin content. As shown in figure 4, treatment of whole-blood samples with A box reduced actin polymerization in unstimulated PMN (fig. 4a), as well as in response to fMLP (fig. 4c) and IL-8 (fig. 4d). In contrast, high B box concentrations (1,000 and 5,000 ng/ml HMGB1 equivalent) significantly increased the PMN F-actin content (fig. 4b). In addition, as observed above for PMN migration, HMGB1 B box (5,000 ng/ml) and fMLP had a synergistic effect on F-actin content (fig. 4e).
As HMGB1 A and B box were found to modulate PMN migration, we then explored whether these two parts could also differentially affect neutrophil activation status in terms of adhesion molecule expression and ROS production. In keeping with the known role of CD11b during PMN migration [19], we found that the A box significantly decreased CD11b expression as compared to the PBS control (fig. 5a) and counteracted chemoattractant-induced CD11b upregulation (fig. 5c, f). In contrast, the A box did not modify L-selectin expression (fig. 5c) and did not reverse L-selectin shedding after PMN activation by fMLP or IL-8 (data not shown). High B box concentrations induced an increase in CD11b expression and a decrease in L-selectin expression (fig. 5b, d). These modi-

Fig. 3. Differential effects of A and B box on PMN migration.
e, f Effect of B box on chemoattractant-induced PMN migration. The lower wells were pretreated with PBS-HSA (1%) or B box (1–5,000 ng/ml, HMGB1 equivalent) for 1 h and then with fMLP (10–7 M) (e) or IL-8 (25 ng/ml) (f) for 30 min in Transwell plates at 37°C. The results are expressed as the migration rate calculated as described above. Values are means ± SEM (n = 3, each experiment performed in triplicate).
g, h A box modulates HMGB1-induced changes in PMN migration. Before being applied to the upper chambers, whole-blood samples were pretreated at room temperature for 30 min with A box (100 ng/ml, HMGB1 equivalent). The lower well of each chamber received 600 µl of PBS-HSA or HMGB1 (100 ng/ml or 5,000 ng/ml) and the chambers were incubated at 37°C for 1 h (HMGB1 100 ng/ml) (g) or 3 h (HMGB1 5,000 ng/ml) (h). The results are expressed as the percentage inhibition or percentage increase, according to the HMGB1 concentration (100 ng/ml or 5,000 ng/ml, respectively) as described in the legend of fig. 1b. Values are means ± SEM (n = 3, each experiment performed in triplicate). * Significantly different from sample incubated with PBS-HSA (a, b, g, h), fMLP (c, e) or IL-8 (d, f) (p < 0.05).
ulations have been linked to PMN activation, leading to L-selectin enzymatic shedding and translocation of intracellular stocks of CD11b to the cell membrane.

We have previously reported that, in whole blood, a given stimulus gives rise to minimal ROS production by PMN that have not been preactivated (‘primed’) [16]. We therefore studied the effect of HMGB1 on the oxidative burst after PMN priming. As shown in figure 5g and h, neither A nor B box modulated ROS production in response to fMLP.

The HMGB1-Induced Increase in PMN Migration Is Related to IL-8 Synthesis

Preincubation of whole-blood samples for 30 min with cycloheximide (10 μg/ml) suppressed the HMGB1-induced increase in PMN migration but had no effect on the HMGB1-induced decrease in PMN migration observed at lower concentrations (fig. 6a). In addition, incubation of whole-blood samples with HMGB1 (1,000 and 5,000 ng/ml) for 3 h significantly increased IL-8 production as compared to PBS (fig. 6b), while TNF-α, IL-1β and IL-6 remained undetectable (fig. 6c). In keeping with previous data [7], preincubation of whole-blood samples with the A box for 15 min suppressed HMGB1-induced IL-8 production (fig. 6b). HMGB1 induced significantly less IL-8 production than LPS, with levels never exceeding 6 ng/ml after 3 h of incubation (fig. 6b). However, IL-8 was found to have a chemotactic effect at concentrations as low as 2.5 ng/ml (fig. 6d). The HMGB1-induced increase in PMN migration was totally reversed by preincubation of whole-blood samples with an anti-IL-8 antibody (fig. 6e), while an irrelevant antibody of the same
isotype had no effect. These findings suggested that HMGB1-induced IL-8 production might be involved in the chemotactic effect of HMGB1 on PMN.

Transduction Pathways Involved in HMGB1-Induced Modulation of PMN Migration

We examined the possible involvement of RAGE, TLR2 and TLR4 in the differential modulation of PMN migration by HMGB1. As shown in figure 7a, the inhibitory effect of HMGB1 100 ng/ml on PMN migration was strongly countered by cell pretreatment with anti-RAGE, while the stimulatory effect of HMGB1 5,000 ng/ml was significantly countered by pretreatment with anti-RAGE, anti-TLR2 or anti-TLR4. We also analyzed the effect of advanced glycation end products (AGEs), reported to interact with RAGE, on PMN migration. We observed a decrease in PMN random migration in the presence of AGEs at 50 and 100 ng/ml, while higher concentrations did not have a significant chemotactic effect (fig. 7b). Together, these results suggest that the decrease in PMN migration observed with low concentrations of HMGB1 is mediated by RAGE receptors, while supplementary engagement of TLR2 and TLR4 may be required for the enhancement of PMN chemotaxis observed at higher HMGB1 concentrations. In keeping with previous data [20], preincubation of whole-blood with PBS, fMLP (10^-6 M) (c, e) or IL-8 (25 ng/ml) (d, f). F-actin content was measured as described above. Values are means ± SEM (n = 3). * Significantly different from samples incubated with PBS (a, b), fMLP (c, e) or IL-8 (d, f) (p < 0.05).

Fig. 4. Effect of A and B box on actin cytoskeleton modifications. c–f Effect of A and B box on chemoattractant-induced actin polymerization. After preincubation with PBS, A box (1–5,000 ng/ml, HMGB1 equivalent) (c, d) or B box (1–5,000 ng/ml, HMGB1 equivalent) (e, f) for 1 h, samples were then incubated for 2 min with PBS, fMLP (10^-6 M) (c, e) or IL-8 (25 ng/ml) (d, f). F-actin content was measured as described above. Values are means ± SEM (n = 3). * Significantly different from samples incubated with PBS (a, b), fMLP (c, e) or IL-8 (d, f) (p < 0.05).
samples with anti-RAGE, anti-TLR2 or anti-TLR4 significantly reduced HMGB1-induced IL-8 production (fig. 6f).

We then investigated the possible participation of various kinases in A box-induced inhibition of PMN migration, by using pharmacological inhibitors of PI3-K (wortmannin), as well as ERK1/2 inhibitor (PD98059) and p38MAPK inhibitor (SB206580). As shown in figure 7c, inhibition of p38MAPK and PI3-K suppressed the chemotactic effect of HMGB1 5,000 ng/ml and accentuated the inhibitory effect of HMGB1 100 ng/ml. Interestingly, HMGB1-induced inhibition of PMN migration was totally reversed in the presence of the ERK1/2 inhibitor PD98059. Moreover, incubation of whole blood with low concentrations of A box increased the phospho-ERK1/2 content (fig. 7d) and decreased the phospho-p38MAPK content (fig. 7e). Pretreatment with the ERK1/2 inhibitor reversed the A box-induced decrease in PMN phospho-p38MAPK content (fig. 7f).

Discussion

Neutrophils are the first cells to be recruited to sites of infection in response to a variety of inflammatory stimuli, and they protect the host by engulfing, killing and digesting invading infectious agents. However, in case of excessive or misdirected responses, PMN may have detrimental effects that contribute to many inflammatory disorders [21]. Fine regulation of PMN recruitment is...
therefore necessary for optimal antibacterial defenses. We show here that the alarmin HMGB1, at concentrations of 50–100 ng/ml, inhibits both baseline PMN migration and PMN chemotaxis towards IL-8 and fMLP. We also show that this effect is suppressed by an anti-RAGE monoclonal antibody and that AGEs also induce a decrease in PMN migration. These data are in keeping with a report from Touré et al. [22], who found that AGE-collagen inhibited PMN chemotaxis in response to chemoattractants. HMGB1 release by dying cells at inflammatory sites, including PMN [23], could trigger a different ‘braking circuit’ that limits neutrophil recruitment and thereby reduces collateral tissue damage during physiological inflammatory responses. Thus, our study identifies HMGB1 as one of few molecules, alongside lactoferrin, lipoxins, netrin-1 and annexin-1, that negatively regulate neutrophil migration [24–27]. This modulation could be attributed to the truncated A box of the protein,

Fig. 5. Effect of A and B box on PMN adhesion molecule expression and oxidative burst. e, f Effect of A box on chemoattractant-induced CD11b upregulation. After preincubation with PBS or A box (1–5,000 ng/ml, HMGB1 equivalent) for 15 min and then with PBS, fMLP (10^{-6} M) (e) or IL-8 (25 ng/ml) (f) for respectively 5 or 45 min, CD11b expression was measured as described above. The results are expressed as mean fluorescence intensity (MFI). Values are means ± SEM (n = 3). g, h Effect of A and B box on PMN oxidative burst. Whole-blood samples were pretreated with HE for 15 min at 37°C and then incubated for 1 h with PBS, A box (1–5,000 ng/ml, HMGB1 equivalent) (g), B box (1–5,000 ng/ml, HMGB1 equivalent) (h) or TNF-α (100 U/ml), followed by fMLP stimulation (10^{-6} M, 5 min). The results are expressed as mean fluorescence intensity (MFI). Values are means ± SEM (n = 3). * Significantly different from samples incubated with PBS (a–d), fMLP (e, g, h) or IL-8 (f) (p < 0.05).
which inhibits PMN migration as well as CD11b expression and actin polymerization.

In contrast, PMN chemotaxis was enhanced by elevated HMGB1 concentrations (5,000 ng/ml). High HMGB1 concentrations have been found in tissues during chronic inflammatory disorders such as rheumatoid arthritis and cystic fibrosis and might thus amplify PMN recruitment to the inflammatory site and lead to bystander tissue damage. In keeping with the results of structure-function studies demonstrating that the active cytokine domain of HMGB1 is located in the DNA-binding B box, we found that the B box, when used alone, increased PMN migration and modulated CD11b and L-selectin expression at the PMN surface. The observed chemotactic effect of HMGB1 involved blood-cell production of IL-8, which exerts its chemotactic function even at concentrations as low as 2.5 ng/ml. In contrast, the stimulatory effect of IL-8 on ROS production and PMN survival (online supplementary figure 1, www.karger.com/doi/10.1159/000328798) in whole-blood conditions appears at higher concentrations (above 25 ng/ml), explaining, at least in part, why...
Fig. 6. The HMGB1-induced increase in PMN migration is related to IL-8 synthesis by blood cells.

d Effect of IL-8 on PMN migration. The lower well of each chamber received 600 μl of PBS-HSA (1%) or IL-8 (0.1–25 ng/ml). The chambers were incubated for 1 h at 37°C. The results are expressed as the migration rate (number of PMN in the lower well after migration/number of PMN applied to the upper well) × 100. Values are means ± SEM (n = 3). * Significantly different from sample incubated with PBS-HSA (p < 0.05).

e Effect of an anti-IL-8 antibody on the HMGB1-induced increase in PMN migration. Before being applied to the upper chamber, whole-blood samples were pretreated at 37°C for 15 min with PBS or an anti-human IL-8 antibody. The lower well of each chamber received 600 μl of PBS-HSA (1%) or HMGB1 (100–5,000 ng/ml). The chambers were incubated for 1 h at 37°C. The results are expressed as the migration rate (number of PMN in the lower well after migration/number of PMN applied to the upper well before migration) × 100. Values are means ± SEM (n = 3). * Significantly different from sample incubated with PBS instead of anti-IL-8 antibody (p < 0.05).

f Involvement of RAGE, TLR2 and TLR4 in HMGB1-induced IL-8 production. Whole-blood samples were pretreated for 30 min with blocking anti-RAGE antibody (10 μg/ml), blocking anti-TLR2 antibody (10 μg/ml), or blocking anti-TLR4 antibody (10 μg/ml) and then incubated for 3 h with PBS or HMGB1 (5,000 ng/ml). IL-8 production was measured as described above. Values are means ± SEM (n = 3). * Significantly different from samples incubated with HMGB1 alone (p < 0.05).
the B box did not stimulate these functions. In addition, the chemoattractant effect of HMGB1 was countered by pretreatment with anti-TLR2 and anti-TLR4 antibodies, in keeping with the involvement of TLR2 and TLR4 in HMGB1-induced IL-8 production. Finally, the synergistic effect of fMLP and HMGB1 (5,000 ng/ml) may be related to cross talk between TLR4 and chemokine receptors, leading to a marked increase in chemokine-driven migration [31].

The intracellular signaling pathways mediating the biological effects of extracellular HMGB1 are poorly documented. In particular, although RAGE has been identified as the receptor for HMGB1, we do not know how RAGE transfers signals to the effectors required for cytoskeleton remodeling and cell migration to the transcriptional machinery. HMGB1 binding to RAGE leads to the activation of multiple signaling molecules, including ERK1/2, p38MAPK, the small GTPases rac and Cdc42,
Fig. 7. Transduction pathways involved in HMGB1 modulation of PMN migration. d Effect of HMGB1 on intracellular ERK1/2 phosphorylation. Whole-blood samples were preincubated at 37°C with PBS or A box (1–5,000 ng/ml, HMGB1 equivalent) for 10 min. Phospho-ERK1/2 content was measured by flow cytometry on methanol-permeabilized cells as described in Materials and Methods. The results are expressed in MFI. Values obtained with an irrelevant antibody of the same isotype were subtracted. Values are means ± SEM (n = 3). * Significantly different from sample incubated with PBS (p < 0.05).

e, f Effect of ERK1/2 inhibitor on HMGB1-induced p38MAPK phosphorylation. Whole-blood samples were pretreated at 37°C for 10 min with PBS (e) or ERK1/2 inhibitor (PD980596 50 μM) (f) and then with PBS or A box (1–5,000 ng/ml, HMGB1 equivalent) for 10 min. Phospho-p38MAPK content was measured by flow cytometry on methanol-permeabilized cells as described in Materials and Methods. The results are expressed in MFI. Values obtained with an irrelevant antibody of the same isotype were subtracted. Values are means ± SEM (n = 3). * Significantly different from sample incubated with PBS (p < 0.05).
and NF-κB. The signaling pathway between RAGE and downstream signal transducers is not fully characterized. We observed that ERK1/2 inhibition reversed the HMGB1-induced decrease in baseline PMN migration as well as in PMN chemotaxis towards IL-8 and fMLP. Moreover, the truncated A box, shown to inhibit PMN migration, increased the phospho-ERK1/2 content (Fig. 7d) and decreased the phospho-p38MAPK content (Fig. 7e), while pretreatment with the ERK1/2 inhibitor reversed the A box-induced decrease in PMN phospho-p38MAPK content. A potential mechanism for HMGB1 inhibition of chemotaxis may involve G protein-coupled receptor (GPCR) desensitization. Several studies have demonstrated a prominent role of GPCR kinase (GRK)2 in the phosphorylation and internalization of chemokine receptors in PMN, leading to desensitization. Interestingly, GRK2 has been reported to act as an inactivator of p38MAPK, thereby inhibiting p38MAPK-mediated cellular processes. Further, GPCR internalization has been closely linked to increased ERK1/2 phosphorylation. Moreover, GRK2 has been reported to act as an inactivator of p38MAPK, thereby inhibiting p38MAPK-mediated cellular processes. Furthermore, GPCR internalization has been closely linked to increased ERK1/2 phosphorylation.}

In conclusion, we show that HMGB1/RAGE interaction downregulates PMN migration. Our results also indicate that the A box may be the ideal HMGB1 antagonist for use in inflammatory disorders associated with excessive HMGB1 production, by limiting PMN recruitment and thereby avoiding bystander tissue damage.

References

HMGB1 Modulates PMN Migration

57

15 François S, El Benna J, Dang PMC, Pedruzzi Inhibition of neutrophil apoptosis by Toll-like receptor agonists in whole blood: involvement of the phosphoinositide-3-kinase/Akt and NF-κB signaling pathways leading to increased levels of Mcl-1, A1 and phosphorylated Bad. J Immunol 2005;174:3633–3642.

