Endothelin in Renal Physiology and Disease
Contributions to Nephrology

Vol. 172

Series Editor

Claudio Ronco Vicenza
Endothelin in Renal Physiology and Disease

Volume Editors

Matthias Barton Zürich
Donald E. Kohan Salt Lake City, Utah

35 figures, 9 in color, and 3 tables, 2011
Contributions to Nephrology
(Founded 1975 by Geoffrey M. Berlyne)

Matthias Barton
Molecular Internal Medicine
University of Zürich
CH-8057 Zürich (Switzerland)

Donald E. Kohan
Division of Nephrology
University of Utah Health Sciences Center
Salt Lake City, UT 84123 (USA)

Library of Congress Cataloging-in-Publication Data

Endothelin in renal physiology and disease / volume editors, Matthias Barton, Donald E. Kohan.
p.; cm. -- (Contributions to nephrology, ISSN 0302-5144 ; v. 172)
Includes bibliographical references and index.
(e-iSBN)
1. Endothelins. 2. Kidney--Diseases. I. Barton, Matthias. II. Kohan, Donald Elliott. III.
Series: Contributions to nephrology ; v. 172. 0302-5144
4. Receptor, Endothelin A--metabolism. W1 CO778UN v.172 2011 / QV 150]
QPS52.ES4E534 2011
612.4'63--dc23

Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus.

Disclaimer. The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publisher and the editor(s). The appearance of advertisements in the book is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 2011 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland)
www.karger.com
Printed in Switzerland on acid-free and non-aging paper (ISO 9706) by Reinhardt Druck, Basel
ISSN 0302–5144
Contents

VII Preface
Barton, M. (Zürich); Kohan, D.E. (Salt Lake City, Utah)

Molecular Biology and Physiology of Endothelin in the Kidney

1 Pharmacology of Renal Endothelin Receptors
Davenport, A.P.; Maguire, J.J. (Cambridge)

18 Renal Function and Blood Pressure: Molecular Insights into the Biology of Endothelin-1
Vignon-Zellweger, N.; Heiden, S.; Emoto, N. (Kobe)

35 Endothelin and the Renal Vasculature
Guan, Z.; Inscho, E.W. (Augusta, Ga.)

50 Endothelin Signaling and Actions in the Renal Mesangium
Sorokin, A. (Milwaukee, Wisc.)

63 Regulation of Sodium Transport in the Proximal Tubule by Endothelin
Zhang, Y. (Chongqing); Jose, P.A. (Washington, D.C.); Zeng, C. (Chongqing)

76 Role of Endothelin in Thick Ascending Limb Sodium Chloride Transport
Ramseyer, V.D.; Cabral, P.D.; Garvin, J.L. (Detroit, Mich.)

84 Endothelins and Kidney Acidification
Wesson, D.E. (Temple, Tex.)

94 Endothelin and Collecting Duct Sodium and Water Transport
Kohan, D.E. (Salt Lake City, Utah)

107 Endothelin in the Control of Renal Sympathetic Nerve Activity
Kopp, U.C. (Iowa City, Iowa)

Pathophysiology: Endothelin and Renal Disease Mechanisms

120 Endothelin and Podocyte Injury in Chronic Kidney Disease
Fligny, C. (Paris); Barton, M. (Zürich); Tharaux, P.-L. (Paris)
139 Endothelin in Diabetic Renal Disease
Benz, K.; Amann, K. (Erlangen)

149 Endothelin, Nitric Oxide, and Reactive Oxygen Species in Diabetic Kidney Disease
Pollock, J.S.; Pollock, D.M. (Augusta, Ga.)

160 Endothelin in Renal Inflammation and Hypertension
Saleh, M.A.; Pollock, D.M. (Augusta, Ga.)

171 Endothelin in Chronic Proteinuric Kidney Disease
Gagliardini, E.; Buelli, S.; Benigni, A. (Bergamo)

185 Endothelin in Renal Injury due to Sickle Cell Disease
Tharaux, P.-L. (Paris)

200 Endothelin in Polycystic Kidney Disease
Chang, M.-Y. (Taoyuan); Ong, A.C.M. (Sheffield)

Clinical Studies of Endothelin Antagonism in Renal Disease Patients

210 Endothelin Antagonism and Reversal of Proteinuric Renal Disease in Humans
Barton, M. (Zürich)

223 Endothelin Antagonism in Patients with Resistant Hypertension and Hypertension Nephropathy
Lazich, I.; Bakris, G.L. (Chicago, Ill.)

235 Endothelin Receptor Blockade in Patients with Diabetic Nephropathy
Rabelink, T.J. (Leiden); Kohan, D.E. (Salt Lake City, Utah)

243 Endothelin Antagonism in Patients with Nondiabetic Chronic Kidney Disease
Dhaun, N.; Goddard, J.; Webb, D.J. (Edinburgh)

255 Endothelin Antagonists in Clinical Trials: Lessons Learned
Barton, M. (Zürich); Kohan, D.E. (Salt Lake City, Utah)

261 Author Index

262 Subject Index
Preface

‘Those diseases which medicines do not cure, the knife cures; those which the knife cannot cure, fire cures; and those which fire cannot cure, are to be reckoned wholly incurable.’

Hippokrátēs (460 BC – 370 BC)

The prevalence and incidence of kidney disease has been steadily increasing, mostly due to rising numbers of patients with obesity and/or diabetes, as well as an aging world population. Chronic kidney disease aggravates other conditions, including arterial hypertension, dyslipidemia, and atherosclerosis. Current drug therapies modestly slow progression of chronic kidney disease rather than reversing structural injury. Unfortunately, a large number of patients ultimately require renal replacement therapy through dialysis or kidney transplantation.

Following seminal discoveries in endothelial biology in the early 1980s, several endothelium-derived vasoconstrictor activities were reported, and by 1988 Yanagisawa and his team had succeeded in isolating, cloning, and sequencing a peptide which even today remains the strongest vasoconstrictor known to man. Named ‘endothelin (ET)’ because of its endothelial cell origin, this peptide activates G protein-coupled receptors and exerts a wide variety of effects on almost every organ system. Within the kidney, ET potently regulates physiologic function and contributes to renal injury through multiple mechanisms. Within the past 10 years the ET field has evolved rapidly; we now know that ET plays a central role in renal sodium and water balance, arterial blood pressure regulation, and the development and maintenance of kidney disease. Exciting new studies even suggest that proteinuric renal disease associated with activation of ET is – at least in part – a reversible condition.

Orally active ET receptor antagonists (ERAs) are now available; this new class of drugs exerts renoprotective activity in numerous models of renal disease. In the late 1990s, the first clinical studies suggested therapeutic potential for ERAs in the treatment of kidney injury. Since then, clinical drug development by a number of pharmaceutical companies has led to studies demonstrating
remarkable antiproteinuric effects of ERAs, even in patients already on current standard antiproteinuric therapy.

This book offers timely reviews by acclaimed experts in pharmacology, molecular biology, physiology, cardiovascular medicine, and nephrology covering (1) pharmacology, molecular biology, and physiology of ET in the kidney; (2) preclinical evidence for the role of ET and ERAs in renal disease; and (3) the current state of clinical development of ERA therapy in renal medicine. We hope that this book will be a valuable source of information for nephrologists, clinicians, and other healthcare professionals; renal physiologists and molecular biologists; postdoctoral researchers and students in the life sciences; and scientists and decision-makers in drug research and drug development.

We thank all contributors and reviewers for their efforts which helped us to complete the book in time for the Twelfth International Conference on Endothelin in Cambridge, UK in September 2011. We sincerely thank Tanja Sebuk, Angela Weber, Yvonne Rebmann, Peter Roth, and Thomas Nold of Karger Publishers for their most professional support.

Matthias Barton, Zürich, Switzerland
Donald E. Kohan, Salt Lake City, Utah, USA