Epidemiology of Major Eye Diseases Leading to Blindness in Europe: A Literature Review

Elena Prokofyeva Eberhart Zrenner

Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany

Introduction

Since many eye diseases are age-related, current increases in life expectancy are bound to have a major influence on the epidemiological profile of reduced vision and blindness in highly developed European countries. Currently, it is estimated that 45 million persons worldwide are blind, with an increase of 1–2 million each year [1].

Age-related macular degeneration (AMD) (26%), glaucoma (20.5%) and diabetic retinopathy (8.9%) are the most frequent causes of blindness in Europe [2]. Public health efforts should focus on the above-mentioned conditions, as they represent the most frequently reported causes of visual disability in Europe and can be prevented or cured through proved cost-effective interventions. In other words, they represent the major causes of avoidable blindness and visual impairment [2]. Reliable European epidemiological data are needed for planning of prevention and intervention strategies tackling these economically relevant diseases.

Many epidemiological studies on age-related eye disorders have been carried out in the USA [3–11]. On the other hand, only few literature reviews on this question have been published in Europe. As a result, European

Key Words
Age-related macular degeneration · Diabetic retinopathy · European data · Epidemiology · Glaucoma · High intraocular pressure · Incidence · Ocular hypertension · Hypertension · Prevalence

Abstract
The objective of this work was to study the epidemiology of major eye diseases leading to blindness in Europe through a systematic literature review. The literature search was performed using the Medline database (PubMed), with MeSH and free text search terms. Inclusion criteria for the studies were: (a) performed on a healthy population of Caucasian origin aged between 50 and 75 years; (b) diagnosed by ophthalmological examination in accordance with the International Classification of Diseases 10; (c) contained a detailed description of the sampling and diagnostic procedures and data resources; (d) sample size >500, and (e) published between 1990 and 2008. The results of 57 studies on the prevalence and incidence of age-related macular degeneration, diabetic retinopathy and glaucoma are reported, providing an up-to-date and comprehensive overview of these diseases in Europe from an epidemiological perspective.

Copyright © 2011 S. Karger AG, Basel

Received: November 24, 2010
Accepted after revision: May 18, 2011
Published online: November 26, 2011

Dr. med. Elena Prokofyeva, MD, MPH, PhD
Institute for Ophthalmic Research
Centre for Ophthalmology, University of Tübingen
Frondsberstrasse 23, DE–72076 Tübingen (Germany)
E-Mail elena.prokofyeva@biomed-engineering.de

KARGER
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

© 2011 S. Karger AG, Basel
0030–3747/12/0474–0171$38.00/0
Accessible online at: www.karger.com/ore
health services and research policies still lack the myriad benefits of such collated information.

Moreover, existing studies focus for the most part only on a single eye disorder, such as AMD [12–14], diabetic retinopathy [15–17], glaucoma [18, 19] or cataract [20, 21]. Despite the high value of the data from these studies, there is still a pressing need for a complete picture of the epidemiological status of age-related eye diseases in Europe.

The present study therefore undertook to describe the present status of epidemiological research on the prevalence and incidence of major eye diseases leading to blindness in Europe through a systematic literature review. The aim was to identify the individual impact of each eye disorder in relation to age and to compare the results among different European countries.

Results

The present study reviewed, to the best of the authors’ knowledge, all relevant European studies on the epidemiology of major eye diseases. Fifty-seven studies published from 1990 to 2008 met the inclusion criteria: 13 European studies on AMD (4 multicentre studies [13, 22–24], 6 prevalence studies from the Netherlands [25], Germany [26], France [27], the UK [28], the European North of Russia [29] and Bulgaria [2], and 3 incidence studies from Rotterdam [22, 30] and Germany [31]), 23 studies of diabetic retinopathy (1 global [32], 3 European [33–35]; 2 multicentre European [15, 36, 37] and 2 multicentre from Spain [38] and Germany [26, 39], 1 long-term follow-up study from Germany [40]; 7 population-based studies [2, 30, 31, 41–45], 5 cross-sectional studies from Germany [39], France [46], Europe [27, 37], Spain [47] and 2 literature reviews [16, 35]), 5 studies of ocular hypertension, including 4 cross-sectional studies: 1 from Spain [48], 2 from France [49, 50], 1 cross-sectional study of high intraocular pressure [51], and 1 longitudinal study from Austria [52]; 17 glaucoma studies including 2 prospective longitudinal studies from the UK [53, 54], 6 population-based studies: 1 from Bulgaria [2], 1 from the European North of Russia [29, 36], 1 from Italy [2], 3 from the Netherlands [1, 2, 45], 4 cross-sectional studies: 2 from Russia [55, 56], 1 from France [46, 49] and 1 from Spain [48] and 4 incidence studies: 1 from the European North of Russia [56], 2 from Germany [31, 57], and 1 from the UK [54]. The data on prevalence will be reported here in percent, with 95 or 99% confidence intervals (CIs); incidence will be presented in percent or in the number of cases per population size or person-years.

Epidemiology of AMD

AMD is the most common cause of severe vision loss worldwide and is characterized by the loss of central vision. Blindness due to AMD occurs at advanced age; over 80% of those affected become blind after 70 years of age [58]. AMD has two forms: ‘wet’ (i.e. neovascular and exudative) AMD and ‘dry’ AMD. Dry AMD tends to progress more slowly than wet AMD [22]. The prevalence of AMD in individuals aged 65–75 ranged between 9 and 25% [22]. It is higher in women [1.03% (95% CI: 0.11–1.96)] than in men [0.90% (95% CI: 0–2.08)] at 65–69 years of age, and changes with age, with a greater increase in women from 1.03% (95% CI: 0.11–1.96) at 65–69 years of age to 2.36% (95% CI: 1.00–3.73) at 70–74 years of age [13]. The propor-
tion of visual impairment due to AMD has been found to vary between 40% in France [27], 39% in Germany [26], 36.3% in the Netherlands [25], 16.30% in the European North of Russia [29], and 14% in Bulgaria [2]. A pooled estimate of AMD prevalence showed that 3.5% (95% CI: 3.0–4.1) of individuals 75 years or older in the UK had AMD [28]. The incidence rate of AMD increased with age from 0 (95% CI: 0–1.0) for the age group 55–64, 0.75 (95% CI: 0.15–2.2) for the age group 65–74 and 3.07 (95% CI: 1.1–6.7) for the population between 74 and 84 years of age [30]. Owen et al. [28] estimated that there are 172,000 individuals (95% CI: 106,000–279,000) with geographic AMD and 245,000 (95% CI: 163,000–364,000) with neovascular AMD in the UK. This study showed that neovascular AMD is the more common cause of blindness registration and leads to more rapid visual loss in comparison to geographic AMD [28]. Importantly, this study also underlines that patients with geographic AMD tend to present at the eye hospital at early disease stages whereas those with neovascular AMD are more likely to present acutely at late disease stages. This should be taken in consideration when comparing the prevalence and incidence of these AMD subtypes.

The studies discussed here are different in design: a study by Owen et al. [28] is a systematic review with subsequent use of the pooled data for the UK, whereas a study by Cohen et al. [27] is a hospital-based prospective study, which was undertaken in a semi-rural area of France. On the other hand, a Rotterdam population-based cohort study on individuals of 55 years of age and older reports 36.3% patients with AMD at a baseline [25]. All of these studies used different age group definition criteria and had different study designs and settings, which makes direct comparison of their results problematic.
A population-based prospective cohort study with a follow-up period of 6.5 years and a total number of 6,418 participants performed in Rotterdam showed that the crude incidence rate of AMD in men was 2.0 per 1,000 person-years and 1.6 per 1,000 person-years in women; this difference was not significant when corrected for age [rate ratio, 0.7 (95% CI: 0.4–1.2) (women vs. men)] [22]. The most recent population-based study in Germany indicated that the incidence of blindness due to AMD in Germany is 3.93 per 100,000 [31]. Figure 1 shows a map of the overall prevalence of AMD in Europe. Figure 2 shows the incidence of AMD in Europe. Data on the prevalence and incidence of AMD by age and gender are shown in Table 1. Age- and sex-specific prevalence of different AMD types is listed in Table 2.

Clinical Outcomes and Socio-Economic Impact of AMD

Clinical Outcomes

AMD is the leading cause of severe visual loss in persons older than 65 years [49, 59]. Overall, 25–30 million individuals worldwide have severe visual loss due to AMD [60]. Neovascular (exudative or wet) AMD represents 10–15% of all cases of AMD and accounts for more than 90% of severe visual loss due to AMD. Patients with bilateral neovascular AMD report a substantially lower quality of life, poorer vision-related functioning, greater anxiety and depression, more frequent falls and fractures, and greater dependency on caregivers. From a clinical perspective, the adverse effects of AMD are a reduc-
Table 1. Prevalence and incidence of AMD by age and gender in the reviewed studies

<table>
<thead>
<tr>
<th>Study name/country</th>
<th>Design</th>
<th>Sample size</th>
<th>Study year/ follow-up period</th>
<th>Age groups</th>
<th>Gender</th>
<th>Prevalence</th>
<th>Incidence</th>
<th>Remarks</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eureye (European Eye Study)</td>
<td>multicenter population-based cross-sectional</td>
<td>4,753</td>
<td>2006</td>
<td>65–69</td>
<td>male</td>
<td>0.90 (0–2.08)</td>
<td></td>
<td>SQ and OPHTH</td>
<td>13</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70–74</td>
<td>male</td>
<td>1.97 (0.77–3.17)</td>
<td>2.36 (1.00–3.73)</td>
<td>OPHTH</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>65</td>
<td>both</td>
<td>3.3 (2.5–4.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thessaloniki Eye Study, Greece</td>
<td>cross-sectional population-based</td>
<td>2,554</td>
<td>2006</td>
<td>60–64</td>
<td>male</td>
<td>0.62%</td>
<td></td>
<td>OPHTH</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>female</td>
<td>0.67%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65–69</td>
<td>male</td>
<td>0.82%</td>
<td></td>
<td>1.23%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>female</td>
<td>1.96%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70–74</td>
<td>male</td>
<td>2.06%</td>
<td></td>
<td>3.54%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>female</td>
<td>2.78%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75–79</td>
<td>male</td>
<td>3.54%</td>
<td></td>
<td>8.75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>female</td>
<td>10.95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>literature review study</td>
<td>98,757</td>
<td>2001</td>
<td>65–79</td>
<td>both</td>
<td>0.15 (0.03–0.27)</td>
<td>0.21 (0.09–0.33)</td>
<td>0.35 (0.14–0.57)</td>
<td>28</td>
</tr>
<tr>
<td>Germany</td>
<td>retrospective longitudinal study</td>
<td>3,531</td>
<td>1994–1998</td>
<td>60–79</td>
<td>both</td>
<td>6.10 (5.39–6.80)</td>
<td></td>
<td>OPHTH</td>
<td>59</td>
</tr>
<tr>
<td>Rotterdam, Netherlands</td>
<td>population-based prospective cohort study</td>
<td>6,418</td>
<td>2003/ 6.5 years</td>
<td>66–69</td>
<td>both</td>
<td>10.8 (8.6–13.7)</td>
<td>19 (15.6–23.2)</td>
<td>2 per 1,000 person-years</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70–74</td>
<td>both</td>
<td>19 (15.6–23.2)</td>
<td>2 per 1,000 person-years</td>
<td>SQ, FI, OPHTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>male</td>
<td>2 per 1,000 person-years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>female</td>
<td>1.6 per 1,000 person-years</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The grading of AMD is based on an international classification and grading system for AMD and ARMD. SQ = Standard questionnaire; FI = fundus image; OPHTH = ophthalmological examination.

Table 2. Age- and sex-specific prevalence of AMD types

<table>
<thead>
<tr>
<th>Type of AMD</th>
<th>Study location</th>
<th>Study design</th>
<th>Sample size</th>
<th>Year</th>
<th>Age group</th>
<th>Gender</th>
<th>Prevalence</th>
<th>Method of diagnosis</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic AMD</td>
<td>UK</td>
<td>literature review (27 references)</td>
<td>98,757</td>
<td>2001</td>
<td>65–79</td>
<td>both</td>
<td>0.53 (0.37–0.68)</td>
<td>OPHTH</td>
<td>28</td>
</tr>
<tr>
<td>Neovascular AMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65–79</td>
<td>both</td>
<td>1.05 (0.57–1.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic AMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65–79</td>
<td>male</td>
<td>0.60 (0.35–0.85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neovascular AMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65–79</td>
<td>female</td>
<td>0.45 (0.26–0.64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early AMD Late AMD</td>
<td>Europe</td>
<td>multinational cross-sectional study</td>
<td>not indicated</td>
<td>2008</td>
<td>65–74</td>
<td>both</td>
<td>15% 1%</td>
<td>OPHTH</td>
<td>14</td>
</tr>
<tr>
<td>Early AMD Late AMD</td>
<td>Rotterdam, Netherlands</td>
<td>prospective follow-up study</td>
<td>6,781</td>
<td>1990–1993</td>
<td>65–74</td>
<td>both</td>
<td>10% 2.4% 9.2%</td>
<td>FIG, OPHTH</td>
<td>4</td>
</tr>
</tbody>
</table>

The grading of AMD is based on an international classification and grading system for AMD and ARMD. FIG = Fundus image grading; OPHTH = ophthalmological examination.
tion in visual acuity, contrast sensitivity and the development of central scotoma [61, 62].

Natural Progression of AMD
A study of the natural progression of untreated age-related macular degeneration showed that the median time between referral assessment and treatment is 28 days (interquartile range = 36.5 days); 44% of the investigated subjects had some degree of visual loss and 16% lost more than 3 lines of distance visual acuity [63]. The time between initial diagnosis and treatment correlated with the progression of visual loss (r = 0.50, p = 0.003) [63]. Average time from baseline to initial appearance of geographic atrophy is 6.6 years (range 4–11). Time from lesion appearance to onset of geographic atrophy depends on the lesion type and ranges from 2.5 to 5.9 years [64].

Economic Costs
AMD results in a substantial economic burden. Cruess et al. [64] performed a multicountry observational study of the economic burden of bilateral neovascular AMD. Societal costs including direct vision-related medical costs (e.g. treatment of AMD and vision-related equipment), direct non-vision-related medical costs (e.g. medications) and direct non-medical-related costs (e.g. home healthcare and social services) were measured in this study. In 2005, the annual societal cost per bilateral neovascular AMD varied by country: 7,349 EUR in France, 12,445 EUR in Germany, 5,732 EUR in Spain and 5,300 EUR in the UK [64]. Direct vision-related medical costs accounted for 23–63% of the total costs [64]. Limited research has been done on the economic burden of neovascular and geographic AMD in Europe. Results of a retrospective, observational, population-based study based on Medicare data showed that median eye-related Medicare costs were USD 1,607 for neovascular AMD patients, USD 832 for non-neovascular/dry AMD patients, and USD 658 for controls [65].

Such a high economic burden highlights both the importance of early AMD screening and the development of new therapies that slow disease progression [66]. Treatment interventions, such as ranibizumab therapy, laser photocoagulation, pegaptanib (macugen) therapy, and photodynamic therapy (PDT) have been shown to improve quality of life, with the highest increase for ranibizumab therapy [67]. An overview of a broad range of cost-effectiveness analyses showed that ranibizumab was the most cost-effective therapy for wet AMD in comparison with other approved therapies (e.g. vs. PDT or pegaptanib). Pegaptanib was found to be cost-effective compared to usual/best supportive care (including PDT) or no treatment only when treatment was initiated in early or moderate stages of disease [68]. PDT was found most likely to be cost-effective when prescribed early to patients with better visual acuity [69]. Laser photocoagulation was also shown to be a cost-effective treatment option for wet AMD treatment. Costs per quality-adjusted life-year (QALY) gained for laser treatment compared to no treatment or observation were USD 5,629–23,176 over a time frame of 11–14 years [70–72]. A Novartis-sponsored literature review underlines that there are no reliable studies on cost-effectiveness of bevacizumab; therefore, off-label use of this treatment strategy is controversial [73]. Additionally, it reports a lack of safety data and little evidence from robust randomized control trials, preventing the proper assessment of the cost-effectiveness of bevacizumab in wet AMD [73]. Most importantly, the pharmacokinetics and pharmacodynamics of bevacizumab are different from those of ranibizumab. Mitchell et al. [73] stress that further robust randomized clinical trials (RCTs) are needed to establish the safety and clinical effectiveness of AMD treatment with bevacizumab. Clinical trials on the efficacy of nutrition components in reducing AMD progression and its prevention are ongoing [74].

Epidemiology of Diabetic Retinopathy in Europe
Diabetic retinopathy is one of the most sight-threatening complications of diabetes mellitus and one of the most important emerging causes of blindness. It accounts for about 2.4 million cases of blindness globally [75]. A proportion of 4.8% of the global population has diabetic retinopathy [32], while 3 [32] to 4.1% [33] of Europeans are affected. According to recent epidemiological data, the prevalence of diabetic retinopathy in individuals over 60 years of age is the highest in France (16.6%) [46], followed by Germany (10.6%) [39]. A prospective multinational WHO cohort study that included 4,662 adult participants who were followed up over a period of 8.4 years showed that the incidence of any diabetic retinopathy in patients with type II diabetes was the highest in the UK (43.3%), followed by Switzerland (42.3%), Poland (31.8%), and Germany (29.9%) [34]. A population-based survey performed in Germany showed that 60- to 74-year-old men had a higher incidence of diabetic retinopathy (29%) than women in the same age range (16.51%) [31]. Mild to moderate diabetic retinopa-
thy (8.5%) was the most prevalent in Germany followed by non-proliferative (1.7%) and proliferative diabetic retinopathy (0.6%) [39]. In the UK, the overall prevalence of any diabetic retinopathy in diabetic patients residing in the English town of Melton Mowbray was 52% [42]. The same study demonstrated that 48% of all patients with diabetic retinopathy had non-proliferative diabetic retinopathy and 4% had proliferative diabetic retinopathy [42]. The same trend was observed in Spain, where the figures were 38.9 and 5.8%, respectively [28]. A map of the prevalence of diabetic retinopathy is shown in figure 3. The incidence of all forms of diabetic retinopathy is shown in figure 4. The prevalence of different types of diabetic retinopathy in Europe is shown in table 3.

Fig. 3. Prevalence of diabetic retinopathy among Europeans with type II diabetes according to available data.

Clinical Outcomes and Socio-Economic Impact of Diabetic Retinopathy

Clinical Outcomes

Diabetic eye disease is one of the leading causes of blindness in the Western world in the 25- to 65-year age group [76]. The most common cause of blindness in patients with diabetes is macular oedema [77]. Morphological changes that lead to blindness frequently develop without any symptoms and remain unnoticed by patients. Nevertheless, changes can be detected by medical examination and treatment is often successful in preserving sight. Reduced vision and blindness caused by diabetic retinopathy are significantly associated with sex, age at the time of examination, age at the time of diagnosis, duration of diabetes, type of diabetes treatment, and hypertension [78].
Natural Progression of Diabetic Retinopathy

The ocular effects of diabetes are assumed to progress from no retinopathy to background retinopathy and then either to proliferative retinopathy, macular oedema, or both. Patients with asymptomatic macular oedema may develop clinically significant macular oedema that can progress to central visual loss; proliferative retinopathy may also result in visual loss [47]. The prevalence of macular oedema was 1.4% in Badajoz, Spain, and 0.85% in Germany [39, 47]. Early screening and treatment of diabetic retinopathy were shown to be cost-effective.

Economic Costs of Diabetic Retinopathy

Screening and treatment of diabetic eye disorders in the USA save USD 3,190 per QALY; this refers to a measurement of outcome that takes into account both the quantity and the quality of life provided by health care intervention; it is the arithmetic product of life expectancy and quality of remaining life years [79]. The average cost for detecting and treating diabetic eye disorders in insulin-dependent diabetes mellitus was USD 1,996 per QALY, 2,933 USD for those with non-insulin-dependent diabetes mellitus who use insulin for glycemic control, and USD 2,993 for those with non-insulin-dependent diabetes mellitus who do not use insulin for glycemic control. Screening and prevention programmes thus lead to substantial savings and are cost-effective societal health investments [80].

If proliferative retinopathy is untreated, 50% of patients with retinal neovascularization will be blind within 5 years; 50% of patients with optic disc neovascularization will be blind within 2 years [81]. Laser photocoagulation performed in the early stages of the disease can lead to a 60% reduction in severe visual loss at 2 years [78].

Epidemiology of Glaucoma in Europe

Glaucoma can be classified into two broad types: open-angle and angle-closure glaucoma, each of which can be categorized as primary or secondary [74]. Sixty-
seven million persons globally, of whom 25 million live in Europe, are affected by glaucoma [82]. It has been estimated that 12.3% of the worldwide population and 21.8% of European adults (including 18% of those over 50 years of age) have been diagnosed with glaucoma [32, 35, 83]. Overall, glaucoma is responsible for 5.2 million cases of blindness (15% of global blindness) [84].

Visual loss in patients with glaucoma is explained by progressive damage to optic nerve fibres. According to recent epidemiological studies, Germany (14%) [26] shows the highest prevalence of glaucoma in Europe followed by the European North of Russia (11.9%) [29]. The lowest prevalence of any type of glaucoma has been registered in France (3.4%) [50] and the UK (3.3%) [85]. A map of the prevalence of glaucoma in Europe is shown in figure 5.

A Spanish epidemiological study showed that primary open-angle glaucoma [2.1% (99% CI: 1.9–2.3)] was more prevalent in men (2.4%) than in women (1.7%) [48]. A cross-sectional study performed in the UK every year from 2000 to 2003 estimated that open-angle glaucoma and ocular hypertension increased both in men (from 3.41 to 3.6%) and in women (from 2.96 to 3.12%), but the prevalence was always higher in men than in women [86].

A retrospective longitudinal study performed in Southern Germany with 5 years of follow-up and 3,531 participants showed that the incidence of glaucoma was 2.37 (95% CI: 1.93–2.81) [87]. A cross-sectional study from the European North of Russia estimated the incidence of glaucoma at a level of 1.3 cases in 1,000 persons [56]. A population-based survey with 647 participants aged 60–74 years was performed in Germany in 1999. This study showed that the sex-specific incidence of glaucoma was also higher in men (6.64%) than in women (2.96%) [31]. A map of the incidence of glaucoma in Europe is shown in figure 6.
Population projections for the years 2010 and 2020 indicate that open-angle glaucoma will become the most prevalent type of glaucoma in Europe, with a prevalence of 23.9 and 21.1%, respectively [88]. Open-angle glaucoma accounts for 56.5% of all cases of glaucoma in Russia [35]. On average, this type of glaucoma accounts for 80% of all cases of glaucoma and becomes more common with increasing age [84]. The age- and sex-specific prevalence of glaucoma in Europe is shown in table 4. The incidence of different types of glaucoma in Europe is shown in table 5.

Clinical Outcomes and Socio-Economic Impact of Glaucoma

Glaucoma is the second most common cause of blindness among the elderly in developed countries [91]. The number of patients with blindness due to glaucoma in different countries varies between 5 and 33% [92]. The symptoms of glaucoma are not obvious in its early stages, when treatment can be the most beneficial, and awareness about the early signs and symptoms of glaucoma is low in many countries [93]. Conversion of ocular hypertension to glaucoma is associated with such risk factors as older age, higher intraocular pressure, larger cup-disc ratio, and lower central corneal thickness [94].

A prospective study of medical costs of glaucoma and ocular hypertension performed in Italy showed that the greater the severity of this disorder, the higher the economic losses. The annual average cost per patient was EUR 788.7 and rose significantly with disease severity from EUR 572 for ocular hypertension, EUR 734.3 for glaucoma, and EUR 1,054.9 for advanced glaucoma [95]. A multinational long-term study of direct costs of glaucoma and disease severity demonstrated a statistically significant increasing linear trend (p = 0.018) in direct costs.
Table 4. Age- and sex-specific prevalence of different types of glaucoma

<table>
<thead>
<tr>
<th>Type of glaucoma</th>
<th>Study location</th>
<th>Study design</th>
<th>Sample size</th>
<th>Year</th>
<th>Age</th>
<th>Gender</th>
<th>Prevalence %</th>
<th>Method of grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAG Other types</td>
<td>Rotterdam, Netherlands</td>
<td>population-based prospective cohort</td>
<td>6,781</td>
<td>1990–1999</td>
<td>65–74</td>
<td>both</td>
<td>22.50</td>
<td>special for this study: incident VF loss presence of a VF defect in at least one eye on Goldmann perimetry in a participant from a cohort at risk or the presence of a defect of at least six continuous points</td>
</tr>
<tr>
<td>OAG Lebanon</td>
<td>cross-sectional study</td>
<td>298</td>
<td>2007</td>
<td>40 years of age and older</td>
<td>both</td>
<td>7.30</td>
<td>criteria were not well described</td>
<td></td>
</tr>
<tr>
<td>Early POAG POAG suspect</td>
<td>Austria long-term follow-up study</td>
<td>4,864</td>
<td>2006/8 years of follow-up</td>
<td>Adults</td>
<td>both</td>
<td>2.9 (2.3–3.3)</td>
<td>Terminology and Guidelines for Glaucoma (ed. 3)</td>
<td></td>
</tr>
<tr>
<td>POAG Spain</td>
<td>cross-sectional population-based</td>
<td>596</td>
<td>2004</td>
<td>Adults</td>
<td>both</td>
<td>2.40</td>
<td>POAG: presence of glaucomatous optic disc + glaucomatous VF changes + intraocular pressure >21 mm Hg</td>
<td></td>
</tr>
<tr>
<td>POAG Primary ACG</td>
<td>Italy population based prevalence survey</td>
<td>1,034</td>
<td>1997</td>
<td>40 years and older</td>
<td>both</td>
<td>2.51 (1.72–3.66)</td>
<td>glaucomatous VF defects (sensitivity decrease ≥6 db in at least one location of the central 10°, two locations for the central 20° or three locations of the central 30°, IOP >20 mm Hg, CDR >0.5, difference in CDR >0.2</td>
<td></td>
</tr>
<tr>
<td>POAG Austria</td>
<td>cohort study</td>
<td>853</td>
<td>2007/5 years</td>
<td>≤50</td>
<td>both</td>
<td>0.7 (0.3–1.9)</td>
<td>Terminology and Guidelines for Glaucoma (ed. 3)</td>
<td></td>
</tr>
<tr>
<td>OAG Thessaloniki, Greece</td>
<td>cross-sectional, population based study</td>
<td>2,554</td>
<td>1999</td>
<td>>60</td>
<td>both</td>
<td>3.8</td>
<td>specific study definition: presents of both glaucomatous optic nerve and confirmed glaucomatous VF defects</td>
<td></td>
</tr>
</tbody>
</table>

OAG = Open-angle glaucoma; POAG = primary open-angle glaucoma; ACG = angle-closure glaucoma; SQ = Standard Questionnaire; OPHTH = ophthalmological examination; VF = visual field. 1 Not obligatory diagnostic criterion.

Table 5. Incidence of different types of glaucoma

<table>
<thead>
<tr>
<th>Type of glaucoma</th>
<th>Study location</th>
<th>Study design</th>
<th>Sample size</th>
<th>Year</th>
<th>Age</th>
<th>Sex</th>
<th>Incidence</th>
<th>Method of diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>POAG Peterborough, UK</td>
<td>calculation of the local prevalence and incidence of POAG using clinical audit data</td>
<td>164,000</td>
<td>2000</td>
<td>60–64/65–69/70–74</td>
<td>both</td>
<td>33.57 (6.92–98.05)</td>
<td>definition of glaucoma by Gupta and Weinreb [89]</td>
<td></td>
</tr>
<tr>
<td>POAG Austria</td>
<td>cohort study</td>
<td>853</td>
<td>2007/5 years follow-up</td>
<td>50</td>
<td>both</td>
<td>0.7% (0.3–1.9%)</td>
<td>Terminology and Guidelines for Glaucoma (ed. 3)</td>
<td></td>
</tr>
<tr>
<td>Glaucoma, all types</td>
<td>Germany retrospective longitudinal study</td>
<td>3,531</td>
<td>1994–1998</td>
<td>60–79</td>
<td>both</td>
<td>2.37 (1.93–2.81)</td>
<td>definition of the European Glaucoma Society including definition of incidence of blindness due to glaucoma-BCVA ≤1/50 in the better eye, and VF ≤50</td>
<td></td>
</tr>
</tbody>
</table>

OPHTH = Ophthalmological examination; BCVA = best-corrected visual acuity; VF = visual field.
cost as glaucoma severity worsened. The direct costs of treatment increased from EUR 455 per person-year for stage 0 to EUR 969 per person-year for stage 4 disease, accounting for EUR 86 for each incremental step [96]. These facts stress the importance of early screening, diagnostics and treatment of glaucoma. Several epidemiological studies have shown that at least half of the patients with glaucoma remain undiagnosed [97], whereas more than half of those who are undergoing treatment do not have the disease [98]. More than half of patients who were newly diagnosed with glaucoma during screening have seen an ophthalmologist before, but glaucoma remained undiagnosed [99]. Since there are no early warning symptoms, it was recommended that all adults over 50 years of age be tested for glaucoma every 2 years [95]. Glaucoma has received very little attention from health economists [100]. This can mostly be explained by the lack of major parameters needed for cost-effectiveness analyses such as: limited utility data mostly based on cross-sectional pilot studies, no standards for collation and report of cost data in glaucoma care, and low sample size, special inclusion and exclusion criteria used in RCTs, protocol-driven costs are limiting the application of RCT results to the general population [100].

Lowering of intraocular blood pressure is important for the treatment of glaucoma. This can be achieved by using topical and/or oral medications, laser surgery, conventional surgery, or a combination of these therapies [101]. Current health economics studies on glaucoma treatment mostly focus on direct costs of glaucoma drugs, and therefore provide only one component of real glau-
AMD was also found to increase with age [100, 102, 103]. The main issue that limits this research in the area of glaucoma treatment is absence of a reliable, transparent and validated long-term effectiveness measure [100].

Discussion

Europe is a continent characterized by high regional variations [2]. The epidemiological rates of visual impairment vary significantly between Western, Central and Eastern Europe and require further review. Moreover, longer life expectancies in developed European countries will increase the prevalence and incidence of age-related eye disorders [32]. Data collection in Europe is currently fragmented due to diverse legal constraints and privacy protection guidelines, which make it difficult to collect patient-related data on a single central server. Furthermore, there is little data exchange among European health care systems, governments and research institutions. Most epidemiological research to date has been performed on the national level; only very few Europe-wide studies exist.

AMD is the third most frequent cause of blindness globally. It is more frequent in women than in men and tends to increase with age, with a sharper increase in women than men; this can probably be explained by the longer life expectancy of women [13]. The incidence of AMD was also found to increase with age [30]; it was not significantly different between men and women [31]. On average, Western European, such as France [27] and Germany [26], tend to have a higher prevalence of AMD than Eastern European countries, including Russia [29] and Bulgaria [2]. These differences could be explained by the longer life-expectancy of the Western European population in comparison with the population in Eastern Europe [104]. This leads to more individuals in Western Europe surviving until they are diagnosed with AMD in comparison with Eastern Europe. Neovascular AMD was shown to be more prevalent in the UK, although these differences were not statistically significant [28]. It is hard to differentiate these two types at later disease stages. Furthermore, patients with geographic AMD tend to visit an ophthalmologist earlier than those with neovascular AMD [28], which can influence the result of epidemiological data comparison. Cigarette smoking, low dietary intake of vitamin E and zinc, increased exposure to sunlight and concomitant cardiovascular disease are the main risk factors of AMD [12] that must be tackled during intervention and prevention programmes. Further studies must be done to clarify the source of differences in AMD prevalence between Western and Eastern Europe. All epidemiological studies on the prevalence and incidence of AMD used the same International Classification and Grading System for AMD and ARMD [105]; despite this fact, some of these studies used slightly different age group definitions, which complicated the comparison of age-specific prevalence and incidence between studies. Some studies differentiated AMD by disease stage (early/late) and type (geographic/neovascular), whereas others only defined AMD type.

The natural progression of AMD to geographic atrophy takes an average of 6.6 years (range 4–11) [64]. However, early screening and identification of individuals with a higher risk of AMD together with nutritional and new preventive strategies can slow down this progression. There is an ongoing debate on off-label use of bevacizumab for treatment of wet AMD. As discussed in a Novartis-sponsored literature review on this topic, the issue of off-label bevacizumab use still remains controversial due to the absence of high-quality and robust RCT data for the comparative efficacy and long-term safety of this treatment approach in comparison with established ones, such as ranibizumab treatment [73].

According to the literature reviewed in this study, diabetic retinopathy affects 3 [32] to 4.1% [33] of Europeans. Recent epidemiological studies have shown that France [46] and Germany [39] show the highest prevalence of diabetic retinopathy in Europe. Its incidence was quite similar among European countries, being highest in the UK and closely followed by Switzerland, Poland and Germany [34]. This trend can be explained by the higher prevalence of lifestyle risk factors such as systemic hypertension, hyperglycaemia, hypercholesterolaemia, cigarette smoking, and diabetic nephropathy in older Europeans [76]. The incidence of diabetic retinopathy was shown to be higher among men than among women in the 60- to 74-year age range [31]. Furthermore, non-proliferative diabetic retinopathy was the most frequent type in most European countries [42]. Studies on the epidemiology of diabetic retinopathy used different sources for diagnostic standards, e.g. Early Treatment Diabetic Retinopathy Study criteria [106] or the diabetic retinopathy classification described by Fukuda [107]. Nevertheless, the diagnostic criteria appeared to be quite similar, enabling the comparison of results. Several studies graded diabetic retinopathy using stages (minimal, mild and moderate).

Diabetic retinopathy is difficult to identify in early screening when treatment can be most effective. Symp-
High intraocular pressure (IOP) and ocular hypertension (OHT) in Europe

Table 6. Prevalence of high intraocular pressure (IOP) and ocular hypertension (OHT) in Europe

<table>
<thead>
<tr>
<th>Disease</th>
<th>Study location</th>
<th>Study design</th>
<th>Sample size</th>
<th>Year</th>
<th>Age</th>
<th>Sex</th>
<th>Prevalence %</th>
<th>Incidence</th>
<th>Grading methods</th>
<th>Methods of diagnosis</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>High IOP</td>
<td>Italy</td>
<td>population-based prevalence survey</td>
<td>1,034</td>
<td>1997</td>
<td>≥40</td>
<td>both</td>
<td>6 (4.71–7.61)</td>
<td>glaucomatous VF defects</td>
<td>standardized initial examination + definite examination with VF testing</td>
<td>OPHTH</td>
<td>51</td>
</tr>
<tr>
<td>OHT</td>
<td>Segovia, Spain</td>
<td>cross-sectional population-based study</td>
<td>596</td>
<td>2004</td>
<td>>60</td>
<td>both</td>
<td>1.7</td>
<td>diagnostic criteria were specific to this study OHT IOP >21 mm Hg, no changes in optic disc or VF</td>
<td>OPHTH</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>cross-sectional study</td>
<td>3,896</td>
<td>2003</td>
<td>>18</td>
<td>both</td>
<td>29.50</td>
<td>Terminology and Guidelines for Glaucoma (ed. 3)</td>
<td>opthalmological reports</td>
<td>49, 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>long-term follow-up study</td>
<td>4,864</td>
<td>2006</td>
<td>adults, no children</td>
<td>both</td>
<td>2.2</td>
<td>Terminology and Guidelines for Glaucoma (ed. 3)</td>
<td>OPHTH</td>
<td>52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VF = Visual field; OPHTH = ophthalmological examination.

Symptoms appear only at the stage of proliferative retinopathy or macular oedema. Patients diagnosed with proliferative retinopathy have a very poor prognosis with respect to visual function. However, early screening and prevention programmes have been shown to be cost-effective, and laser coagulation, performed early enough, can stabilize the progression of the disease and prevent blindness.

Glaucoma is one of the leading causes of blindness both in Europe and worldwide [84]. The prevalence of glaucoma ranged widely across Europe; it was highest in Germany [26] and the European North of Russia [29] and lowest in France [50] and the UK [85]. This could be due to the higher frequency of risk factors such as high intraocular pressure, age, various forms of vascular pathology (diabetes, systemic hypotension/hypertension, vasospastic syndrome), myopia, cigarette smoking and alcohol consumption in the former countries [108]. Spanish data showed that open-angle glaucoma is more prevalent in men than in women, but increases in frequency in both sexes over time [48]. The incidence of glaucoma was higher in Germany [87] than in the European North of Russia [56]. Sex-specific glaucoma incidence was also higher in men than in women [31]. A population projection study indicated that open-angle glaucoma will be the most frequent type in 2010 and 2020, and recent studies also show that this type accounts for 80% of all glaucoma cases [88]. Epidemiologic studies on glaucoma often lacked generally approved diagnostic criteria and used different diagnostic tests that made it difficult to compare available data.

Early diagnosis of glaucoma is difficult because the disease is asymptomatic in its early stages, when treatment is most beneficial, and it can progress unnoticed. High intraocular pressure is a condition which, if not identified in its early stages, will lead to glaucoma. The overall estimate of the prevalence of ocular hypertension in a Spanish cross-sectional study was 1.7% (CI 99%: 1.6–1.8). Prevalence rates of ocular hypertension did not significantly differ between men (1.8%) and women (1.6%) [48]. The prevalence estimate was highest in the age range 40–49 (2.6%), lowest in the age range 50–59 (0.9%), and homogeneous among those over 60 (1.6–1.7%) [48]. Overall, the prevalence of ocular hypertension was higher in Austria than in Spain. Cross-sectional studies from France [49, 50] used different diagnostic and research approaches and were not comparable with other studies. Despite the importance of data on such high-risk conditions as high intraocular pressure and ocular hypertension, our literature search found only 5 epidemiological studies on the subject. This indicates the importance of much more extensive research to better estimate the prevalence and incidence of these diseases in Europe. The prevalence of high intraocular pressure and ocular hypertension in Europe is shown in table 6. Studies indicate that knowledge about glaucoma was low in the general population of many countries. Glaucoma leads to high societal costs, which are strongly correlated with disease...
The percentage of total blindness by cause of blindness and low vision in WHO regions as well as on Deafness and contained data on the prevalence within the WHO Programme for the Prevention of Blindness and Deafness and contained data on the prevalence of blindness and low vision in WHO regions as well as on the percentage of total blindness by cause [109]. Nevertheless, data on the prevalence and incidence of major eye diseases were not presented. Furthermore, data on Europe were significantly lacking in comparison with other WHO regions, and a comparison of different countries was not included. The study included results from 25 European population-based studies published between 1982 and 2000. Kocur and Resnikoff [2] reviewed 5 European studies on major eye diseases published from 1970 to 1998. While they summarized the impact of these diseases on visual impairment within each country, they failed to compare epidemiological data among the studies.

The present study compared data from (to the best of the authors’ knowledge) all recent European studies concerning the incidence and prevalence of AMD, diabetic retinopathy and glaucoma over a period of 18 years from 1990 to 2008. An overview and comparison of overall and specific prevalence and incidence estimates of major eye diseases in Europe are presented, and the natural progression, the economic impact, and methods of treatment discussed.

The literature search included all papers relevant to the epidemiology of major eye diseases leading to blindness in Europe without restriction to any specific ethnicity. The available publications did not adequately report on the epidemiology of these diseases for non-Caucasian populations. Therefore, the scope of the paper was limited in order to perform a comprehensive analysis of available studies on individuals of Caucasian origin, which represent the majority of the European population. The issue of ethnic differences is quite complicated and, unfortunately, rarely described in the literature. While we were not able to include summary information here, we welcome future research on the topic.

Some caution is advisable when comparing different epidemiological studies, especially from different European countries since such studies often use different diagnostic criteria, possibly with different age group definitions and diagnostic methods. This is particularly true of a review of the literature on glaucoma epidemiology since there are no well-established, commonly accepted criteria in Europe for its diagnosis. We attempted to minimize this limitation by using very specific and strict inclusion criteria. The studies reported in this paper used similar diagnostic procedures and approaches. Where differences remained, we have clarified this to ensure the reliability of conclusions derived from this systematic literature review.

Overall, the present study showed that, despite the large number of epidemiological studies of major eye diseases performed worldwide, accurate data are still largely lacking for Europe. This study highlighted the importance of undertaking multicentre, population-based studies of major eye diseases leading to blindness in Europe. Generally approved diagnostic criteria and gold standard screening diagnostic procedures are required to make results of such studies comparable.

The results of the present systematic literature meta-analysis will help policy makers, researchers, patient organizations and pharmaceutical companies to better understand the epidemiology of major eye diseases in Europe. It is the authors’ hope that these results will also lead to the establishment of a common set of preventive measures based on solid epidemiological data and will make it possible to monitor the effects of such prevention and intervention.

Acknowledgments

We would like to thank Pamela C. Sieving, MA, MS, AHIP for her generous help with the literature search. Dr. Matthew B. Blaschko, for English language assistance, Dr. med. Werner Inhoffen and PD Dr. med. Focke Ziemssen, for providing help in finding important literature on current controversies in the treatment of AMD. European maps in the text are based on templates from the University of Alabama Maps Project [111].

This work was supported by a stipend from the Tistou and Charlotte Kerstan Foundation Vision 2000, EU grant EVGENORET LSHG-CT-2005–512036. The funding sources for this study had no influence on the study design, the manner in which data were collected, analysed, and interpreted, the writing of the report, or the decision to submit the paper for publication.

Disclosure Statement

No conflicts of interest exist on the part of any of the authors.
References

55 Morbidity of the population of Arkhangelsk Oblast in 2006: Statistical Data, Arkhangelsk Oblast Administration, Department of Public Health, Medical Information Center. 2007.

Hirskyj P: QALY: an ethical issue that dare not speak its name. Nurs Ethics 2007;14:72–82.

Alabama, Cartographic Research Laboratory, University of Alabama: Alabama maps project, 2009.