New Trends in Allergy and Atopic Eczema
Contents

XI Preface
Ring, J.; Darsow, U.; Behrendt, H. (Munich)

Allergy and Environment: Determinants of Allergy Development

1 Allergy in Evolution
Platts-Mills, T.A.E. (Charlottesville, Va.)

Abstract
Evolution of Protein Structures
‘Evolution’ of Allergic Diseases: 1870–2000
Conclusions
Acknowledgement
References

7 Climate Change, Environment and Allergy
Behrendt, H.; Ring, J. (Munich)

Abstract
Environment and Allergy
Environmental Pollution
Western Lifestyle
Climate Change
Climate Change Effects upon Pollen
More Pollen
New Pollen
Altered Pollen
Other Allergens
Conclusion
Acknowledgement
References

15 The Hygiene Hypothesis Does Not Apply to Atopic Eczema in Childhood
Cramer, C.; Link, E. (Düsseldorf); Koletzko, S. (Munich); Lehmann, I. (Leipzig); Heinrich, J.;
Wichmann, H.-E. (Neuherberg); Bauer, C.-P. (Munich); v. Berg, A.; Berdel, D. (Wesel);
Herbarth, O. (Leipzig); Schaaf, B. (Bad Honnef); Borte, M. (Leipzig); Behrendt, H. (Munich);
Krämer, U. (Düsseldorf)

Abstract
Eczema in East and West Germany
Eczema and Day Care Center Attendance
Eczema, Older Siblings and FLG Mutations
Conclusion
Molecular Genetics of Atopic Eczema
Ring, J. (Munich); Möhrenschlager, M. (Davos); Weidinger, S. (Kiel)

Abstract
Classical Genetics
Linkage Studies
Genes of Skin Barrier Function
Genes Involved in IgE-Mediated Hypersensitivity
Genes with Unknown Function
Conclusions
Acknowledgement
References

Pathogenesis of the Deviated Immune Response

Mechanisms of Immune Tolerance to Allergens
Fujita, H. (Davos/Yokohama); Meyer, N.; Akdis, M.; Akdis, C.A. (Davos)

Abstract
Pathogenesis of Allergic Diseases
B Regulatory Cells
Mechanisms of Allergen-Specific Immunotherapy
Role of T Cells
Role of Allergen-Specific IgG4
Regulation of Basophils, Eosinophils and Mast Cells
Clinical Use
Conclusions
Acknowledgements
References

Th17 and Th22 in Skin Allergy
Cavani, A. (Rome); Pennino, D.; Eyerich, K. (Munich)

Abstract
Th17 in Atopic Dermatitis
Th22 in Atopic Dermatitis
Conclusions
References

IL-25 Induces Both Inflammation and Skin Barrier Dysfunction in Atopic Dermatitis
Deleuran, M.; Hvid, M. (Aarhus); Kemp, K.; Christensen, G.B. (Ballerup); Deleuran, B.; Vestergaard, C. (Aarhus)

Abstract
Conclusion and Perspectives
References

Angiogenesis, Lymphangiogenesis and Atopic Dermatitis
Genovese, A.; Detoraki, A.; Granata, F.; Galdiero, M.R.; Spadaro, G.; Marone, G. (Naples)

Abstract
Proangiogenic Factors
Angiogenic Factors in Atopic Dermatitis
Cellular Sources of Angiogenic and Lymphangiogenic Factors in Atopic Dermatitis
Angiogenesis and Lymphangiogenesis in Experimental Models of Atopic Dermatitis
61 What Can Dogs Bring to Atopic Dermatitis Research?
Oliver, T. (Raleigh, N.C.)

61 Abstract
62 Canine Atopic Dermatitis Is a Common Spontaneous Animal Heritable Skin Disease
63 Dogs and Humans with Atopic Dermatitis Exhibit the Same Hypersensitivity Patterns
63 Canine and Human Atopic Dermatitis Are Phenotypically Similar
64 Canine and Human Atopic Dermatitis Have Similar Treatment Outcome
66 Canine and Human Atopic Dermatitis Have Similar Pathogenesis
67 Skin Lesions of Canine (and Human) Atopic Dermatitis Can Be Modeled Experimentally
68 Intradermal Challenges with Allergens or Anti-IgE Antibodies
68 Epicutaneous Allergen Challenges of Sensitized Dogs
68 Environmental and Systemic Allergen Challenges of Sensitized Dogs
69 Conclusions
69 References

73 Can Microbial Superantigens Influence Atopic Dermatitis Flares?
Alomar, A. (Barcelona)

73 Abstract
74 Effects of Malassezia on Immune Response
75 Conclusion
75 References
76 Further Reading

77 Inflammation-Induced Alterations in the Skin Barrier Function: Implications in Atopic Dermatitis
Vestergaard, C.; Hvid, M.; Johansen, C. (Aarhus); Kemp, K. (Ballerup); Deleuran, B.; Deleuran, M. (Aarhus)

77 Abstract
79 References

Clinical Aspects

81 Itch and Eczema
Darsow, U.; Pfab, F.; Valet, M.; Tölle, T.R.; Ring, J. (Munich)

81 Abstract
81 Pathophysiology
82 Itch Questionnaires in Atopic Eczema
83 Processing of the Itch Sensation in the Human Brain
83 Volunteer Studies
84 Patient Studies
85 Therapy of Itch in Eczema
87 References

89 Eczema Herpeticum
Wollenberg, A. (Munich)

89 Abstract
89 History and Epidemiology
90 Diagnostic Procedures
90 Pathogenesis of Eczema Herpeticum
91 Therapy of Eczema Herpeticum
91 Antiviral Chemotherapy of Eczema Herpeticum
Bone Mineral Density in Patients with Atopic Dermatitis
Haeck, I.; van Velsen, S.; de Bruin-Weller, M.; Bruijnzeel-Koomen, C. (Utrecht)

Abstract

Conclusions

References

Immunosuppressive Effect of Prolactin-Induced Protein
Sugiura, S. (Otsu); Fujimiya, M. (Sapporo); Ebise, H. (Osaka); Miyahira, Y. (Otsu); Kato, I. (Kanazawa); Sugiura, Y. (Tokyo); Kimura, T. (Osaka); Uehara, M. (Yasu); Sato, H. (Otsu); Sugiura, H. (Otsu/Kusatsu)

Abstract

Materials and Methods

Animals

Induction of Oxazolone-Induced Contact Sensitivity

Immunohistological Study of the Ear with Anti-Prolactin-Induced Protein Antibody in Oxazolone Challenged Mice

Construction of Mouse Prolactin-Induced Protein Peptide

Animals and Induction of Oxazolone-Induced Contact Sensitivity

Induction of an Immunomodulatory Effect by Prolactin-Induced Protein Peptide

Measurement of Ear Thickness and Tissue Sample Collections

Histology and Immunohistochemistry of Ears on Mice Treated with Oxazolone and Prolactin-Induced Protein Peptide

Statistical Analyses

Results

Expression of Prolactin-Induced Protein in Skin Lesions in a Mouse Chronic Allergic Contact Dermatitis Model

Immunosuppressive Effect of Prolactin-Induced Protein Peptide in a Mouse Chronic Allergic Contact Dermatitis Model

Local Inhibitory Effect of Prolactin-Induced Protein Peptide Observed by Histopathology

Discussion

References

Is Food Allergy Testing Reliable in Pediatric Atopic Dermatitis?
A Population-Based Study

Abstract

Methods

Results

Discussion

Acknowledgement

References

New Strategies for Dealing with Staphylococcus aureus Colonization and the Emerging Methicillin-Resistant Staphylococcus aureus Epidemic in Atopic Dermatitis
Boguniewicz, M. (Denver, Colo.)

Abstract

Community-Acquired Methicillin-Resistant Staphylococcus aureus
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>Why Is Community-Acquired Methicillin-Resistant \textit{Staphylococcus aureus} So Virulent?</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>\textit{Staphylococcus aureus}, Toxins and Atopic Dermatitis</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Strategies for Dealing with Methicillin-Resistant \textit{Staphylococcus aureus} Colonization in the Community Setting</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Novel Approaches to Dealing with Resistant \textit{Staphylococcus aureus}</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Conclusions</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Anti-IL-4 as a New Strategy in Allergy</td>
<td>Schmidt-Weber, C.B. (Munich)</td>
</tr>
<tr>
<td>120</td>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>IL-4 Receptors and Cellular Targets</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>New Concepts and Targets</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Potential Side Effects</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Target of Anti-IL-4 Therapy</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Conclusion</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>New Drug Targets in Atopic Dermatitis</td>
<td>Simon, D.; Simon, H.-U. (Bern)</td>
</tr>
<tr>
<td>126</td>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Targeting B Cells</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Targeting T Cells</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Targeting B and T Cell Products</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Acknowledgements</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Latest Approaches to Treating Atopic Dermatitis</td>
<td>Paller, A.S. (Chicago, Ill.)</td>
</tr>
<tr>
<td>132</td>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Impairment of the Epidermal Barrier: Proteins, Proteases and Lipids</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Translation of Discoveries about Barrier Dysfunction into New Therapy</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>The Importance of \textit{Staphylococcus aureus} in Atopic Dermatitis</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Improving Atopic Dermatitis through Decreasing Organisms</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Topical Anti-inflammatory Therapy Continues to Be Critical as Treatment</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>The Recalcitrant Patient</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Conclusions</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Author Index</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Subject Index</td>
<td></td>
</tr>
</tbody>
</table>
Preface

Allergy and allergic diseases have increased in prevalence dramatically over the last decades. Relevant determinants influencing the development of allergic inflammation come from the environment and are either enhancing – promoting allergy – or protective in nature. The lack of protective factors such as early stimulation of the immune system through infection or parasite infestation by improved hygiene seems to go along with allergy promoting effects of environmental pollutants such as traffic exhaust – fine or ultrafine particles – or tobacco smoke in the indoor air. Climate change with higher CO₂ concentrations in the atmosphere and increases in the Earth’s surface temperature may contribute to an increase in allergic diseases by prolonging the flowering period of pollinating plants and immigration of allergenic neophytes.

Great progress has been made in elucidating the pathomechanisms of allergic reactions both at the level of molecular genetics and in the understanding of the complex orchestra of cells and mediators in the allergic inflammation.

It has become clear that not only the deviated immune response is a prerequisite for allergy with dominant Th2 reactions and consequent IgE production, but also the epithelial barrier is of crucial importance both in the mucosal surface of the airway and in the skin.

In spite of the great progress in the experimental allergology and immunology, there is still a tremendous gap between the theoretical knowledge and the practical performance in daily life treating allergic patients in the office or in the hospital. This becomes especially obvious when we think of subjective symptoms such as itch, which is the major symptom of allergic skin disease.

Only on the basis of a better understanding of the pathomechanisms and the molecular pathways involved can new therapeutic and preventive strategies for future management of allergic patients seem possible.

This volume brings together a carefully selected list of articles based upon lectures given at the International Symposium ‘New Trends in Allergy VII’ together with the ‘6th Georg Rajka Symposium on Atopic Dermatitis’ organized in Munich in July 2010. At this symposium, two remarkable traditions were joined: the symposia ‘New Trends in Allergy’, which began in 1980 in Munich and have since been held in 5-year intervals in Munich, Hamburg and Davos. The International Symposium on
Atopic Dermatitis was started by Professor Georg Rajka in Oslo and held five times in Norway. Since 1996, taking the name of the founder, they have been continued all over the world, taking place in Aarhus, Davos, Portland, Rome, Arcachon, Kyoto and Munich, and have brought together all the experts both from clinics and research interested in the field of atopic eczema. The next Georg Rajka Symposium will be held in 2012 in Moshi, Tanzania, in order to stress the fact that allergy and eczema is not a disease of the so-called Western world, but can be found also in rural regions in central sub-Saharan Africa.

We would like to thank Alberto Giannetti (Modena), Alain Taïeb (Bordeaux), Kristian Thstrup-Petersen (Aarhus) and Hirohisa Takigawa (Matsumoto) for help in the development of the Rajka symposia. Mr. Preussler and Mrs. Burk deserve thanks for the excellent organization of the symposium in Munich. A final highlight was the performance of an ‘allergy musical’ by the coworkers of the Department of Dermatology and Allergy as well as the ZAUM [Zentrum Allergie und Umwelt (Center for Allergy and Environment)] at the Biederstein Campus of the Technische Universität München in the Löwenbräukeller: ‘King Ludwig II – His Life, His Death, His Allergy!’ In this play, undiscussed aspects of the mysterious end of Bavaria’s dream king were put to stage in a humorous fashion, at the same time giving a new example of very well accepted allergy education.

Thanks also go to Mr. Nold and Mr. Brian from Karger Publishers for the excellent help in the production of this book.

We would also like to thank the Christine Kühne Center of Allergy Research and Education (CK-CARE) as well as the Munich Allergy Research Society (Verein zur Förderung der Forschung und Fortbildung auf dem Gebiet dermatologischer und allergologischer Erkrankungen e.V.) for their generous support.

Johannes Ring, Munich
Ulf Darsow, Munich
Heidrun Behrendt, Munich