The Evaluation of Body Composition: A Useful Tool for Clinical Practice

Ronan Thibault a Claude Pichard b

 a Centre de Recherche en Nutrition Humaine Auvergne, UMR 1019 Nutrition Humaine, INRA, Clermont Université, Service de Nutrition Clinique, CHU de Clermont-Ferrand, Clermont-Ferrand, France; b Nutrition Unit, Geneva University Hospital, Geneva, Switzerland

Introduction

Chronic undernutrition is characterized by a progressive reduction of the fat-free mass (FFM) and fat mass (FM) which has deleterious consequences on health. Undernutrition is insufficiently screened and treated in hospitalized or at-risk patients despite its high prevalence and negative impact on mortality, morbidity, length of stay (LOS), quality of life, and costs [1–4]. The risk of underestimating hospital undernutrition is likely to worsen in the next decades because of the increasing prevalence of overweight, obesity, and chronic diseases and the increased number of elderly subjects. These clinical conditions are associated with FFM loss (sarcopenia). Therefore, an increased number of patients with FFM loss and sarcopenic obesity will be seen in the future.

Sarcopenic obesity is associated with decreased survival and increased therapy toxicity in cancer patients [5–10], whereas FFM loss is related to decreased survival, a negative clinical outcome, increased health care costs [2], and impaired overall health, functional capacities, and quality of life [4–11]. Therefore, the detection and treatment of FFM loss is a major issue of public health and health costs [12].

Weight loss and the body mass index (BMI) lack sensitivity to detect FFM loss [13]. In this review, we support the systematic assessment of FFM with a method of body composition evaluation in order to improve the detec-
tion, management, and follow-up of undernutrition. Such an approach should in turn reduce the clinical and functional consequences of diseases in the setting of a cost-effective medico-economic approach (fig. 1). We discuss the main applications of body composition evaluation in clinical practice (fig. 2).

Rationale for a New Strategy for the Screening of Undernutrition

Screening of Undernutrition Is Insufficient

Academic societies encourage systematic screening of undernutrition at hospital admission and during the hospital stay [14]. The detection of undernutrition is generally based on measurements of weight and height, calculations of BMI, and the percentage of weight loss. Nevertheless, screening of undernutrition is infrequent in hospitalized or nutritionally at-risk ambulatory patients. For example, in France, surveys performed by the French Health Authority [15] indicate that: (i) weight alone, (ii) weight with BMI or percentage of weight loss, and (iii) weight, BMI, and percentage of weight loss are reported in only 55, 30, and 8% of the hospitalized patients’ records, respectively. Several issues, which could be improved by specific educational programs, explain the lack of implementation of nutritional screening in hospitals (table 1). In addition, the accuracy of the clinical screening of undernutrition could be limited at hospital admission. Indeed, patients with ‘sarcopenic overweight or obesity’, early screening of undernutrition with a dedicated method of body composition evaluation would allow early initiation of nutritional support and, in turn, improvements of nutritional status and clinical outcome.
weight and obesity is also increasing in hospitalized patients. A 10-year comparative survey performed in a European hospital showed an increase in patients’ BMI, together with a shorter LOS [17]. The BMI increase masks undernutrition and FFM loss at hospital admission. The increased prevalence of obesity in an ageing population has led to the recognition of a new nutritional entity: ‘sarcopenic obesity’ [18]. Sarcopenic obesity is characterized by increased FM and reduced FFM with a normal or high body weight. The emergence of the concept of sarcopenic obesity will increase the number of situations associated with a lack of sensitivity of the calculations of BMI and body weight change for the early detection of FFM loss. This supports a larger use of body composition evaluation for the assessment and follow-up of nutritional status in clinical practice (fig. 1).

Body Composition Evaluation for the Assessment of Nutritional Status

Body composition evaluation is a valuable technique to assess nutritional status. Firstly, it gives an evaluation of nutritional status through the assessment of FFM. Sec-
ondly, by measuring FFM and phase angle with BIA, it allows evaluation of the disease prognosis and outcome.

Body Composition Techniques for FFM Measurement

Body composition evaluation allows measurement of the major body compartments: FFM (including bone mineral tissue), FM, and total body water. Table 2 shows indicative values of the body composition of a healthy subject weighing 70 kg. In several clinical situations, i.e. hospital admission, chronic obstructive pulmonary disease (COPD) [21–23], dialysis [24–26], chronic heart failure [27], amyotrophic lateral sclerosis [28], cancer [5, 29], liver transplantation [30], nursing home residence [31], and Alzheimer’s disease [32], changes in body compartments are detected with the techniques of body composition evaluation. At hospital admission, body composition evaluation could be used for the detection of FFM loss and undernutrition. Indeed, FFM and the FFM index (FFMI) [FFM (kg)/height (m^2)] measured by BIA are significantly lower in hospitalized patients (n = 995) than in age-, height-, and sex-matched controls (n = 995) [3]. Conversely, clinical tools of nutritional status assessment, such as BMI, subjective global assessment, or mini-nutritional assessment, are not accurate enough to estimate FFM loss and nutritional status [30, 32–34]. In 441 patients with non-small cell lung cancer, FFM loss determined by computerized tomography (CT) was observed in each BMI category [7], and in young adults with all

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Impossible measurement for medical reasons</th>
<th>Difficult interpretation</th>
<th>Organizational reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Impossibility to stand up: mandatory bedridden position, subject confined to bed, impaired physical function.</td>
<td>Overhydration</td>
<td>Lack of time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dehydration</td>
<td>Lack of knowledge of health carers, including physicians, about the impact of undernutrition on clinical outcome.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miscalibrated weigh machine</td>
<td>Lack of manpower</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overweight and obesity</td>
<td>Lack of weigh machines</td>
</tr>
<tr>
<td>Body mass index</td>
<td>Undeterminable height: mandatory bedridden position, subject confined to bed, impaired physical function. Unknown height: memory dysfunction, dementia, coma.</td>
<td>Overhydration</td>
<td>Lack of time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dehydration</td>
<td>Lack of knowledge of health carers about the impact of undernutrition on clinical outcome.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miscalibrated weigh machine</td>
<td>Lack of manpower</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overweight and obesity</td>
<td>Lack of height gauge</td>
</tr>
<tr>
<td>Percentage of weight loss</td>
<td>Undeterminable usual weight: unknown, memory dysfunction, dementia, coma.</td>
<td>Overhydration</td>
<td>Lack of time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dehydration</td>
<td>Lack of knowledge towards undernutrition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miscalibrated weigh machine</td>
<td>Lack of health carers</td>
</tr>
</tbody>
</table>

Table 2. Mean values of body composition compartments (adapted from Pichard and Kyle [19] and Wang et al. [20])

<table>
<thead>
<tr>
<th>Whole-body compartments</th>
<th>Specific compartments</th>
<th>Compartment levels, according to Wang et al. [20]</th>
<th>Percentage of total body weight</th>
<th>Absolute values in a 70-kg human subject, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFM (including TBW)</td>
<td>Body proteins</td>
<td>molecular</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>ICW</td>
<td>cellular</td>
<td>36</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>ECW</td>
<td>cellular</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>Bone tissue</td>
<td>ACM = body proteins + ICW</td>
<td>tissular</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>TBW = ICW + ECW</td>
<td>Total FFM (= body proteins + ICW + ECW)</td>
<td>molecular</td>
<td>49</td>
<td>34</td>
</tr>
<tr>
<td>FM</td>
<td>Total FFM</td>
<td>whole-body</td>
<td>60</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>ACM</td>
<td>80</td>
<td>56</td>
<td>14</td>
</tr>
</tbody>
</table>

ACM = Active cell mass; ECW = extracellular water; ICW = intracellular water; TBW = total body water.
types of cancer, an increase in FM together with a decrease in FFM were reported [29]. These findings reveal the lack of sensitivity of BMI to detect FFM loss. Moreover, the FFMI is a more sensitive determinant of LOS than a weight loss over 10% or a BMI below 20 [3]. In COPD, the assessment of FFM by BIA is a more sensitive method to detect undernutrition than anthropometry [33, 35]. BIA is also more accurate at assessing nutritional status in children with severe neurologic impairment than the measurement of skinfold thickness [36].

Body Composition for the Evaluation of Prognosis and Clinical Outcome

FFM loss is correlated with survival in different clinical settings [5, 21–28, 37]. In patients with amyotrophic lateral sclerosis, an FM increase, but not an FFM increase, measured by BIA, was correlated with survival during the course of the disease [28]. The relation between body composition and mortality has not yet been demonstrated in the intensive care unit. The relation between body composition and mortality has been demonstrated with anthropometric methods, BIA, and CT. Measurement of the mid-arm muscle circumference is an easy tool to diagnose sarcopenia [38]. The mid-arm muscle circumference has been shown to be correlated with survival in patients with cirrhosis [39, 40], HIV infection [41], and COPD in a stronger way than BMI [42]. The relation between FFM loss and mortality has been extensively shown with BIA [21–28, 31, 37], which is the most used method. Recently, very interesting data suggest that CT could evaluate the disease prognosis in relation to muscle wasting. In obese cancer patients, sarcopenia as assessed by CT measurement of the total skeletal muscle cross-sectional area is an independent predictor of the survival of patients with bronchopulmonary [5, 7], gastrointestinal [5], and pancreatic cancers [6]. FFM assessed by measurement of the mid-thigh muscle cross-sectional area by CT is also predictive of mortality in COPD patients with severe chronic respiratory insufficiency [43]. In addition to mortality, a low FFMI at hospital admission is significantly associated with an increased LOS [3, 44]. A bicentric controlled population study performed in 1,717 hospitalized patients indicates that both loss of FFM and excess of FM negatively affect the LOS [44]. Patients with sarcopenic obesity are most at risk of increased LOS. This study also found that excess FM reduces the sensitivity of BMI to detect nutritional depletion [44]. Together with the observation that the BMI of hospitalized patients has increased during the last decade [17], these findings suggest that FFM and FFMI measurement should be used to evaluate nutritional status in hospitalized patients.

BIA measures the phase angle [45]. A low phase angle is related to survival in oncology [46–50], HIV infection/AIDS [51], amyotrophic lateral sclerosis [52], geriatrics [53], peritoneal dialysis [54], and cirrhosis [55]. The phase angle threshold associated with reduced survival is variable: less than 2.5 degrees in amyotrophic lateral sclerosis patients [52], 3.5 degrees in geriatric patients [53], from less than 1.65 to 5.6 degrees in oncology patients [47–50], and 5.4 degrees in cirrhotic patients [55]. The phase angle is also associated with the severity of lymphopenia in AIDS [56], and with the risk of postoperative complications among gastrointestinal surgical patients [57]. The relation of phase angle with prognosis and disease severity reinforces the interest in using BIA for the clinical management of patients with chronic diseases at high risk of undernutrition and FFM loss.

In summary, FFM loss or a low phase angle is related to mortality in patients with chronic diseases, cancer (including obesity cancer patients), and elderly patients in long-stay facilities. A low FFM and an increased FM are associated with an increased LOS in adult hospitalized patients. The relation between FFM loss and clinical outcome is clearly shown in patients with sarcopenic obesity. In these patients, as the sensitivity of BMI for detecting FFM loss is strongly reduced, body composition evaluation appears to be the method of choice to detect undernutrition in routine practice. Overall, the association between body composition, phase angle, and clinical outcome reinforces the pertinence of using a body composition evaluation in clinical practice.

Which Technique of Body Composition Evaluation Should Be Used for the Assessment of Nutritional Status?

Numerous methods of body composition evaluation have been developed: anthropometry, including the 4-skinfold method [58], hydrodensitometry [58], in vivo neutron activation analysis [59], anthropogammametry from total body potassium-40 [60], nuclear magnetic resonance [61], dual-energy X-ray absorptiometry (DEXA) [62, 63], BIA [45, 64–66], and more recently CT [7, 43, 67]. DEXA, BIA, and CT appear to be the most convenient methods for clinical practice (fig. 2), while the other methods are reserved for scientific use.

Compared with other techniques of body composition evaluation, the lack of reproducibility and sensitivity of the 4-skinfold method limits its use for the accurate measurement of body composition in clinical practice [33,
Body Composition in Practice

evaluate FFM by measuring the muscle cross-sectional area from L3 to the iliac crest by use of Hounsfield unit (HU) thresholds (–29 to +150) [5, 7]. The muscles included in the calculation of the muscle cross-sectional area are psoas, paraspinal muscles (erector spinae, quadratus lumborum), and abdominal wall muscles (transversus abdominis, external and internal obliques, rectus abdominis) [6]. CT also provided detail on specific muscles, adipose tissues, and organs not provided by DEXA or BIA. L3-targeted CT images could be theoretically performed solely, since they result in X-ray exposition similar to that of a chest radiography.

In summary, DEXA, BIA, and L3-targeted CT images could all measure body composition accurately. The technique selection will depend on the clinical context, hardware, and knowledge availability. Body composition evaluation by DEXA should be performed in patients having a routine assessment of bone mineral density. Also, analysis of L3-targeted CT is the method of choice for body composition evaluation in cancer patients. Body composition evaluation should also be done for every abdominal CT performed in patients who are nutritionally at risk or undernourished. Because of its simplicity of use, BIA could be widely implemented as a method of body composition evaluation and follow-up in a great number of hospitalized and ambulatory patients. Future research will aim to determine whether a routine evaluation of body composition would allow early detection of the increased FFM catabolism related to critical illness [75].

Body Composition Evaluation for the Calculation of Energy Needs

The evaluation of FFM could be used for the calculation of energy needs, thus allowing the optimization of nutritional intakes according to nutritional needs. This could be of great interest in specific situations, such as severe neurologic disability, overweight, and obesity. In 61 children with severe neurologic impairment and intellectual disability, an equation integrating body composition had good agreement with the doubly labeled water method. It gave a better estimation of energy expenditure than did the Schofield predictive equation [36]. However, in 9 anorexia nervosa patients with a mean BMI of 13.7, prediction formulas of resting energy expenditure including FFM did not allow accurate prediction of the resting energy expenditure measured by indirect calorimetry [76]. In overweight or obese patients, the muscle catabolism in response to inflammation was the same as that observed...
in patients with normal BMI. Indeed, despite a higher BMI, the FFM of overweight or obese individuals is similar (or slightly increased) to that of patients with normal BMI. Thus, the use of actual weight for the assessment of the energy needs of obese patients would result in overfeeding and its related complications. Therefore, the experts recommend the use of indirect calorimetry or calculation of the energy needs of overweight or obese patients as follows: 15 kcal/kg actual weight/day or 20–25 kcal/kg ideal weight/day [77, 78], although these predictive formulas could be inaccurate in some clinical conditions [79]. In a US prospective study conducted in 33 ICU medical and surgical ventilated ICU patients, daily measurement of the active cell mass (table 2) by BIA was used to assess the adequacy between energy/protein intakes and needs. In that study, nutritional support with 30 kcal/kg actual body weight/day energy and 1.5 g/kg/day protein allowed stabilization of the active cell mass [75]. Thus, follow-up of FFM by BIA could help optimize nutritional intakes when indirect calorimetry cannot be performed.

In summary, the measurement of FFM should help adjust the calculation of energy needs (expressed as kcal/kg FFM) and optimize nutritional support in critical cases other than anorexia nervosa.

Body Composition Evaluation for the Follow-Up and Tailoring of Nutritional Support

Body composition evaluation allows a qualitative assessment of body weight variations. The evaluation of body composition may help to document the efficiency of nutritional support during a patient’s follow-up of numerous clinical conditions, such as surgery [59], anorexia nervosa [76, 80], hematopoietic stem cell transplantation [81], COPD [82], ICU [83], lung transplantation [84], ulcerative colitis [59], Crohn’s disease [85], cancer [86, 87], HIV/AIDS [88], and acute stroke in elderly patients [89]. Body composition evaluation could be used for the follow-up of healthy elderly subjects [90]. Body composition evaluation allows characterization of the increase in body mass in terms of FFM and FM [81, 91]. After hematopoietic stem cell transplantation, the increase in BMI is the result of the increase in FM, but not of the increase in FFM [81]. Also, during recovery after an acute illness, weight gain 6 months after ICU discharge could be mostly related to an increase in FM (+7 kg) while FFM only increased by 2 kg; DEXA and air displacement plethysmography were used to measure the FM and FFM [91]. These two examples suggest that body composition evaluation could be helpful to decide the modification and/or the renewal of nutritional support. By identifying the patients gaining weight but reporting no or insufficient FFM, body composition evaluation could contribute to influencing the medical decision of continuing nutritional support that would have been stopped in the absence of body composition evaluation.

In summary, body composition evaluation is of the utmost interest for the follow-up of nutritional support and its impact on body compartments.

Body Composition Evaluation for Tailoring Medical Treatments

In clinical situations when weight and BMI do not reflect the FFM, the evaluation of body composition should be used to adapt drug doses to the FFM and/or FM absolute values in every patient. This point has been recently illustrated in oncology patients with sarcopenic obesity. FFM loss was determined by CT as described above. In cancer patients, some therapies could affect body composition by inducing muscle wasting [92]. In patients with advanced renal cell carcinoma [92], sorafenib induces a significant 8% loss of skeletal muscular mass at 12 months. In turn, muscle wasting in patients with BMI less than 25 was significantly associated with sorafenib toxicity in patients with metastatic renal cancer [8]. In metastatic breast cancer patients receiving capecitabine treatment, and in patients with colorectal cancer receiving 5-fluoro-uracil, using the convention of dosing per unit of body surface area, FFM loss was the determinant of chemotherapy toxicity [9, 10] and time to tumor progression [10]. In colorectal cancer patients administered 5-fluoro-uracil, low FFM is a significant predictor of toxicity only in female patients [9]. The variation in toxicity between women and men may be partially explained by the fact that FFM was lower in females. Indeed, FFM reflects the distribution volume of most cytotoxic chemotherapy drugs. In 2,115 cancer patients, the individual variations in FFM could change by up to three times the distribution volume of the chemotherapy drug per body area unit [5]. Thus, administering the same doses of chemotherapy drugs to a patient with a low FFM compared to a patient with a normal FFM would increase the risk of chemotherapy toxicity [5]. These data suggest that FFM loss could have a direct impact on the clinical outcome of cancer patients. Decreasing chemotherapy doses in case of FFM loss could contribute to improving cancer patients’ prognosis through the improvement of the toler-
ance of chemotherapy. These findings justify the system-
atic evaluation of body composition in all cancer patients
in order to detect FFM loss, tailor chemotherapy doses
according to FFM values, and then improve the efficacy-
tolerance and cost-efficiency ratios of the therapeutic
strategies [93]. Body composition evaluation should also
be used to tailor the doses of drugs which are calculated
based on patients’ weight, e.g. corticosteroids, immuno-
suppressors (infliximab, azathioprine or methotrexate),
or sedatives (propofol).

In summary, measurement of FFM should be imple-
mented in cancer patients treated with chemotherapy.
Clinical studies are needed to demonstrate the impor-
tance of measuring body composition in patients treated
with other medical treatments.

Towards the Implementation of Body Composition
Evaluation in Clinical Practice

The implementation of body composition evaluation
in routine care presents a challenge for the next decades.
Indeed the concomitant increases in elderly subjects and
patients with chronic diseases and cancer, and in the
prevalence of overweight and obesity in the population,
will increase the number of patients nutritionally at risk
or undernourished, particularly those with sarcopenic
obesity. Body composition evaluation should be used to
improve the screening of undernutrition in hospitalized
patients. The results of body composition should be based
on the same principle as BMI calculation, towards the
systematic normalization for body height of FFM (FFMI)
and FM [FM (kg)/height (m)² = FM index] [94]. The re-
results could be expressed according to previously de-
scribed percentiles of healthy subjects [95, 96]. Body com-
position evaluation should be performed at the different
stages of the disease, during the course of treatments and
the rehabilitation phase. Such repeated evaluations of
body composition could allow assessment of the nutri-
tional status, adjusting the calculation of energy needs as
kilocalories/kilogram FFM, following the efficacy of nu-
tritional support, and tailoring drug and nutritional ther-
apies. BIA, L3-targeted CT, and DEXA represent the
techniques of choice to evaluate body composition in
clinical practice (fig. 2). In the setting of cost-effective
and pragmatic use, these three techniques should be al-
ternatively chosen. In cancer, undernourished, and nu-
tritionally at-risk patients, an abdominal CT should be
completed by the analysis of L3-targeted images for the
evaluation of body composition.

In other situations, BIA appears to be the simplest most
reproducible and less expensive method, while DEXA, if
feasible, remains the reference method for clinical practice.
By allowing earlier management of undernutrition, body
composition evaluation can contribute to reducing malnu-
trition-induced morbidity and mortality, improving the
quality of life and, as a consequence, increasing the medi-
co-economic benefits (fig. 1). The latter needs to be dem-
onstrated. Moreover, based on a more scientific approach,
i.e. allowing for printing reports, objective initial assess-
ment and follow-up of nutritional status, and the adjust-
dment of drug doses, body composition evaluation would
contribute to a better recognition of the activities related
to nutritional evaluation and care by the medical commu-
nity, health care facilities, and health authorities (fig. 2).

Conclusion

Screening of undernutrition is insufficient to allow for
optimal nutrition care. This is in part due to the lack of
sensitivity of BMI and weight loss for detecting FFM loss
in patients with chronic diseases. Methods of body com-
position evaluation allow a quantitative measurement of
FFM changes during the course of disease and could be
used to detect FFM loss in the setting of an objective, sys-
tematic, and early undernutrition screening. FFM loss is
closely related to impaired clinical outcomes, survival,
and quality of life, as well as increased therapy toxicity
in cancer patients. Thus, body composition evaluation
should be integrated into clinical practice for the initial
assessment, sequential follow-up of nutritional status,
and the tailoring of nutritional and disease-specific ther-
apies. Body composition evaluation could contribute to
strengthening the role and credibility of nutrition in the
global medical management, reducing the negative im-
pact of malnutrition on the clinical outcome and quality
of life, thereby increasing the overall medico-economic
benefits.

Acknowledgements

R. Thibault and C. Pichard are supported by research grants
from the public foundation Nutrition 2000 Plus.

Disclosure Statement

Ronan Thibault and Claude Pichard declare no conflict of in-
terest.
References

Body Composition in Practice

