A Silica-Induced Pulmonary Fibrosis Model: Are We Closer to ‘Real Life’?

E. Fireman

Institute of Pulmonary and Allergic Diseases, National Service for Interstitial Lung Diseases, Tel Aviv Sourasky Medical Center, and Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease that is associated with high mortality rates and is unresponsive to currently available treatments. The study of IPF in humans is complicated by the fact that its natural history is unknown and the evolution of the process is unclear. By the time patients seek medical treatment for symptoms the disease process is generally advanced [1]. A growing body of evidence suggests that, unlike other interstitial lung diseases, IPF is a distinct entity in which inflammation is a secondary and nonrelevant pathogenic partner. It has been suggested that IPF is characterized by a sequence of events that starts with alveolar epithelial microinjuries followed by the formation of fibroblastic foci and resulting in an exaggerated deposition of the extracellular matrix, which drives the destruction of the lung parenchyma architecture [2, 3]. Animal models have been developed to study the evolution of fibrotic responses and these have identified a number of key cells, mediators and processes that are likely involved in human IPF. However, no current animal model is capable of recapitulating all of these cardinal manifestations of the human disease. As such, there are no appropriate experimental models of IPF, not only because we do not know its etiology, but also because all the traditional models start with an inflammatory reaction in spite of the fact that IPF is now accepted as being a noninflammatory disease.

It is important to emphasize that the bleomycin model, the most ubiquitous experimental model of lung fibrosis, is a paradigm of the inflammatory route. Findings in animals sacrificed at early stages (i.e. 3 days postinstillation) are almost exclusively inflammatory, while those sacrificed at later stages (i.e. 14–21 days postinstillation) show both inflammation and fibrosis. Thus, the bleomycin model is useful for investigating the fibrotic response to acute lung injury and for evaluating the short-term treatment with various drugs, but not for mimicking human IPF [4].

In this issue of *International Archives of Allergy and Immunology*, Shimbori et al. [5] presented a very well-conducted study on silica-induced pulmonary fibrosis, and showed that treatment with a highly selective CysLT1 receptor antagonist (pranlukast) has antifibrotic effects that are independent of any effect on the acute inflammatory response. One of the most important findings of the present study is that long-term treatment (10 weeks) with pranlukast significantly attenuated the development of pulmonary fibrosis, while short-term treatment (2 weeks) failed to inhibit the initial increase in hydroxyproline content in the fibrotic lungs. These results demonstrate that the beneficial antifibrotic effect of the long-term pranlukast treatment regimen may be due to the inhibition of the progression of fibrosis rather than the inhibition of the onset of fibrosis. In addition, the number of inflam-
matory cells in bronchoalveolar lavage fluids, the leuko-
atrie content and the mRNA levels of cytokines were not
affected by the short-term treatment regimen. It follows,
therefore, that pranlukast has no therapeutic effect on the
acute inflammatory response.

The use of silica aerosolization to induce pulmonary
fibrosis has frequently been reported in the literature [6].
The instillation of mineral fibers into the rodent lung re-
results in the development of fibrotic nodules that resemble
lesions which develop in humans following some occupa-
tional exposures to mineral dust and particulate aerosols
[7]. As with bleomycin-induced injury, the silica-induced
fibrosis is strain dependent. The fibrotic response due to
instillation of silica in mice is associated with limited and
transient inflammation and overexpression of the anti-
inflammatory cytokine, IL-10; notably, anti-inflamma-
tory therapies have no effect in this murine model [8].
Despite the fact that silica instillation induces a strong
Th2 response in mice [9], these cytokines are not instru-
mental in the development of the disease [10]. In spite of
the fact that the silica model is closer to the human con-
dition, several limitations have prevented its wider use for
studying IPF. For example, the silica-induced fibrosis
lacks the characteristic IPF histology, with areas of fibro-
sis having no fibroblastic foci, temporal heterogeneity or
hyperplastic epithelium. Furthermore, delivery of aero-
solized silica is also problematic insofar as it requires ex-
pensive and specialized equipment. This model might ac-
tually be more suitable to reflect secondary fibrosis due
to occupational exposure rather than idiopathic onset.

Another important novel finding of the present study
is that the content of CysLTs in fibrotic lungs was mark-
edly increased in silica-instilled mice, and that the 10-
week pranlukast treatment attenuated both the progres-
sion of pulmonary fibrosis and the observed increases in
CysLT content in fibrotic lungs. Although we believe that
some drug targets for human disease can effectively be
identified through animal studies (e.g. the transforming
growth factor-β pathway of ligand activation, receptor
binding site and intracellular signal network), it has re-
cently been pointed out that we know far less about the
pathogenesis of human IPF than of experimental fibrosis
in mice and rats [11, 12].

Shimbori et al. [5] have contributed a valuable hereto-
fore unavailable opportunity to evaluate long-term in-
duced pulmonary fibrosis in an animal model that comes
closer to the human condition than earlier ones. Their
having studied a molecule well recognized for human use
in other pulmonary diseases may speed the achievement
of the final goal of discovering effective treatment for id-
idiopathic pulmonary processes in general and, especially,
for occupational-induced fibrosis.

References

1 Kuhn C: Pathology; in Phan S, Thrall R (eds): Pulmonary Fibrosis. New York, Dekker,
2 Selman M, King TE, Pardo A: Idiopathic pulmonary fibrosis: prevailing and evolving
hypotheses about its pathogenesis and implications for therapy. Am Intern Med 2001;
134:136–151.
3 Katzenstein ALA, Fiorelli RF: Nonspecific interstitial pneumonia/fibrosis: histologic
chronic lung damage does not resemble human idiopathic pulmonary fibrosis. Am J
Respir Crit Care Med 2001;163:1648–1653.
5 Shimbori C, Shiota N, Okunishi H: Pranlu-
kast, a cysteinyl leukotriene type I 1 receptor
antagonist, attenuates the progression, but
not the onset, of silica-induced pulmonary
fibrosis in mice. Int Arch Allergy Immunol
6 Davis GS, Leslie KO, Hemenway DR: Silico-
sis in mice: effects of dose, time, and genetic
17:81–97.
7 Oberdorster G: Significance of particle pa-
rameters in the evaluation of exposure-dose-
response relationships of inhaled particles.
Inhal Toxicol 1996;8:73–89.
8 Barbarin V, Nihoul A, Missos P, Arras M,
Delos M, Leclercq I, Lison D, Huaux F: The
role of pro- and anti-inflammatory respons-
es in silica-induced lung fibrosis. Respir Res
2005;6:112.
9 Barbarin V, Xing Z, Delos M, Lison D, Huaux
F: Pulmonary overexpression of IL-10 aug-
ments lung fibrosis and Th2 responses in-
duced by silica particles. Am J Physiol Lung
10 Misson P, Brombacher F, Delos M, Lison D,
Huaux F: Type 2 immune response associ-
ated with silicosis is not instrumental in the
development of the disease. Am J Physiol
11 Chua F, Gauldie J, Laurent GJ: Pulmonary fi-
brosis: searching for model answers. Am J
12 Hunninghake GW, Schwarz MI: Does cur-
rent knowledge explain the pathogenesis of
idiopathic pulmonary fibrosis? A perspec-