Pulmonary Vascular Disorders
Pulmonary Vascular Disorders

Volume Editors

Marc Humbert Clamart
Rogerio Souza Sao Paulo
Gérald Simonneau Clamart

82 figures, 21 in color, 45 tables, 2012
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreword</td>
<td>VII</td>
</tr>
<tr>
<td></td>
<td>Preface</td>
<td>VIII</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Updated Clinical Classification of Pulmonary Hypertension</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Montani, D.; Simonneau, G. (Clamart)</td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Pathology of Pulmonary Arterial Hypertension</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Dorfmüller, P. (Le Plessis Robinson)</td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Invasive Rest and Exercise Hemodynamics in the Modern Management of Pulmonary Vascular Disease: An Expanding Role in the Future</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Whyte, K.F. (Auckland); Hervé, P. (Le Plessis-Robinson); Hoette, S.; Chemla, D. (Clamart)</td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Exercise Testing in Pulmonary Arterial Hypertension</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Provencher, S.; Mainguy, V. (Québec, Qué.)</td>
<td></td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Noninvasive Exploration of the Pulmonary Circulation and the Right Heart</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Vonk Noordegraaf, A. (Amsterdam); Peacock, A. (Glasgow); Naeije, R. (Brussels)</td>
<td></td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Biomarkers in Pulmonary Arterial Hypertension</td>
<td>59</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Genetics of Pulmonary Arterial Hypertension and the Concept of Heritable Pulmonary Arterial Hypertension</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Giner, B.; Montani, D.; Yaici, A. (Clamart); Eyries, M.; Coulet, F.; Soubrier, F. (Paris); Humbert, M. (Clamart)</td>
<td></td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Drug- and Toxin-Induced Pulmonary Arterial Hypertension</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Price, L.; Bouillon, K.; Wort, S.J. (London); Humbert, M. (Clamart)</td>
<td></td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Idiopathic Pulmonary Arterial Hypertension and Its Prognosis in the Modern Management Era in Developed and Developing Countries</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Jiang, X. (Shanghai); Humbert, M. (Clamart); Jing, Z.-C. (Shanghai)</td>
<td></td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Pulmonary Arterial Hypertension Complicating Connective Tissue Disorders</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Le Pavec, J. (Clamart); Hassoun, P.M. (Baltimore, Md.)</td>
<td></td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Pulmonary Arterial Hypertension and HIV and Other Viral Infections</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Degano, B.; Valmary, S. (Besançon); Sitbon, O.; Humbert, M. (Clamart)</td>
<td></td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Portopulmonary Hypertension and Hepatopulmonary Syndrome</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Savale, L.; Hervé, P.; Sitbon, O. (Clamart)</td>
<td></td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Pulmonary Hypertension in Congenital Heart Diseases</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Tissot, C.; Beghetti, M. (Geneva)</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 14 **Pulmonary Hypertension in Sickle Cell Disease**
Parent, F.; Savale, L. (Clamart); Maitre, B. (Créteil); Simonneau, G. (Clamart)
Page 137

Chapter 15 **Schistosomiasis and Pulmonary Hypertension**
Page 143

Chapter 16 **Pulmonary Veno-Occlusive Disease**
Page 149

Chapter 17 **Pulmonary Hypertension and Left Heart Disease**
Adir, Y. (Haifa); Galiè, N. (Bologna)
Page 161

Chapter 18 **Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease**
Weitzenblum, E. (Strasbourg); Chaouat, A. (Nancy); Canuet, M.; Ducoloné, A.; Kessler, R. (Strasbourg)
Page 169

Chapter 19 **Pulmonary Hypertension Complicating Interstitial and Granulomatous Lung Diseases**
Nunes, H.; Uzunhan, Y.; Gille, T. (Bobigny); Dauriat, G. (Paris); Brauner, M.; Kambouchner, M.; Valeyre, D. (Bobigny)
Page 178

Chapter 20 **High-Altitude Pulmonary Hypertension**
Di, R.-M.; Jing, Z.-C. (Shanghai)
Page 199

Chapter 21 **Acute Pulmonary Venous Thromboembolic Disease**
Sanchez, O.; Meyer, G. (Paris)
Page 207

Chapter 22 **Anticoagulation for Venous Thromboembolism in the Modern Management Era**
Le Gal, G.; Leroyer, C.; Mottier, D. (Brest)
Page 218

Chapter 23 **Chronic Thromboembolic Pulmonary Hypertension**
Lang, I.M. (Vienna); Jais, X. (Clamart)
Page 226

Chapter 24 **Medical Treatment of Pulmonary Arterial Hypertension**
O'Callaghan, D.S. (Clamart); Gaine, S.P. (Dublin)
Page 237

Chapter 25 **Lung Transplantation and Role for Novel Extracorporeal Support in Pulmonary Hypertension**
Hoepier, M.M. (Hannover)
Page 246

Chapter 26 **Atrial Septostomy**
Vachiéry, J.-L. (Brussels)
Page 254

Chapter 27 **Pulmonary Vascular Disorders in Hereditary Hemorrhagic Telangiectasia**
Cottin, V.; Khouatra, C.; Dupuis-Girod, S.; Cordier, J.-F. (Lyon)
Page 262

Chapter 28 **Future Perspectives in Pulmonary Arterial Hypertension**
Rubin, L.J. (La Jolla, Calif.)
Page 276

Author Index
Page 280

Subject Index
Page 281
The aim of Progress in Respiratory Research, the so-called blue series, has always been to cover a broad range of topics in respiratory medicine. When looking for a topic for the next volume to follow the most recent one on Antituberculosis Chemotherapy (vol. 40), I realized that we never had an entire book dedicated to pulmonary vascular disorders during my tenure as series editor. I actually had to go back all the way to 1990, i.e. 22 years ago, to find the last such volume entitled: Pulmonary Blood Vessels in Lung Disease. While paging through it, I was stunned to realize how much progress has been made during the last two decades. On the therapeutic side for primary pulmonary hypertension, the only options that were discussed back then were the use of warfarin and a first hint at calcium channel blockers, which probably would have to have been administered in high doses. It was thus clear to me that we urgently needed a state-of-the-art update in that field.

To ask Marc Humbert to become a volume editor was an easy choice, and to my delight he not only accepted the task but also brought along two other eminent specialists, Rogerio Souza and Gérald Simonneau, as volume co-editors. As usual for Progress in Respiratory Research, the ‘who’s who’ were invited from all over the world to contribute chapters to the current book and cover the entire range of pulmonary vascular disorders. Careful attention was paid to have the latest scientific findings reported.

The result is an outstanding stand-alone volume which – as the volume editors mention in the following Preface – should appeal to health care providers interested in the field, ranging from nurses to top specialists in the field.

I hope that you as the reader will enjoy the read, and would like to express my gratitude to the volume editors and chapter authors, as well as the editorial team at Karger Publishers, in particular Linda Haas and Stefan Sessler, who helped us all to have this book out in time.

C.T. Bolliger, Cape Town
Preface

World health is generally improving with fewer people dying from infectious diseases, and therefore chronic diseases are more prevalent. In that context, the burden of chronic respiratory diseases is increasing and conditions such as asthma and chronic obstructive pulmonary diseases are clear public health priorities worldwide. Pulmonary vascular diseases and their consequences on right heart function also contribute markedly to the global burden of chronic pulmonary diseases.

Pulmonary hypertension has previously been called an orphan disease, that is, a condition which affects few individuals and is overlooked by the medical profession and pharmaceutical companies. Although undoubtedly rare, the concept that pulmonary hypertension is overlooked cannot be considered to be the case today. Indeed, there have been a number of important discoveries in recent years that have significantly improved our understanding of the disease, helped guide patient management, and laid foundations for future research. Since the middle of the twentieth century, amazing achievements have been made in the field from the development of right heart catheterization techniques to the first description of ‘primary’ pulmonary hypertension and the progress achieved as a result of the National Institute of Health Registry and the World Pulmonary Hypertension conferences which have taken place only four times: in 1973 (Geneva, Switzerland), 1998 (Evian, France), 2003 (Venice, Italy), and 2008 (Dana Point, California, USA). The more recent set of European guidelines have been jointly published by the European Society of Cardiology and the European Respiratory Society and endorsed by the International Society for Heart and Lung Transplantation. These guidelines give a robust hemodynamic definition of pulmonary hypertension as an increase in mean pulmonary arterial pressure ≥25 mm Hg at rest, as assessed by right heart catheterization. These guidelines also provide a very clear classification of the five major clinical subcategories of pulmonary hypertension. Of these, pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension have seen the most rapid advancements in terms of knowledge and treatment options in the past decades.

By contrast, pulmonary venous thromboembolic disease is one of the most frequent diseases encountered in clinical practice, and diagnostic and treatment options have been revolutionized by large studies allowing robust recommendations in terms of diagnosis, prevention, and treatment. Only a small minority of patients with acute pulmonary embolism (sometimes subclinical) will develop chronic thromboembolic disease, a major cause of pulmonary hypertension which can be cured by pulmonary endarterectomy, an outstanding but difficult surgical procedure developed in a few expert centers.

We have come a long way since 1973 when the World Health Organization sponsored the first international meeting on a mysterious condition named ‘primary pulmonary hypertension’, spurned by the interest created by the sudden increase in patients who had used the anorexigen aminorex fumarate. It remains widely believed that pulmonary hypertension is a rare disease. Although true for idiopathic pulmonary arterial hypertension, a condition affecting less than 15 individuals per million inhabitants in Europe, the true burden of pulmonary hypertension is currently unknown and largely underestimated. In the developing world, highly prevalent diseases such as schistosomiasis in Brazil are associated with an increased risk of pulmonary hypertension. In addition, patients with
sickle cell disease, human immunodeficiency virus infection, liver cirrhosis, autoimmune diseases, and congenital heart diseases are at risk for pulmonary hypertension. Moreover, hypoxia is a major worldwide risk factor for pulmonary hypertension. The predominant causes of hypoxia are inadequate oxygenation of arterial blood as a result of either lung disease, impaired control of breathing, or residence at high altitude. Indeed, more than 140 million individuals live above 2,500 m worldwide, including more than 80 million in Asia and 35 million in South America.

Altogether, the burden of pulmonary vascular diseases is certainly underestimated worldwide and requires much attention from the medical community. Better characteriza-

Marc Humbert, Clamart
Rogerio Souza, Sao Paulo
Gérald Simonneau, Clamart