Allergy and the Nervous System
Allergy and the Nervous System

Volume Editor

John Bienenstock Hamilton, Ont.

51 figures, and 4 tables, 2012
Chemical Immunology and Allergy
Formerly published as 'Progress in Allergy' (Founded 1939), continued 1990–2002 as 'Chemical Immunology'

Dr. John Bienenstock
Departments of Pathology and Molecular Medicine
McMaster University
Brain-Body Institute, St. Joseph's Healthcare
50 Charlton Avenue East, T3304
Hamilton, Ontario L8N 4A6 (Canada)
E-Mail bienens@mcmaster.ca
Contents

XI Preface
Bienenstock, J. (Hamilton, Ont.)

XII References

1 Relations between Asthma and Psychological Distress: An Old Idea Revisited
Van Lieshout, R.J. (Hamilton, Ont.); MacQueen, G.M. (Calgary, Alta.)

1 Abstract
2 Epidemiologic Evidence of the Association between Asthma and Mood and Anxiety Disorders
3 Mechanisms Underlying the Association between Asthma and Mood and Anxiety Disorders
4 Familial and Genetic Associations between Asthma and Depression
5 Hypothalamic Pituitary Adrenal Axis
6 The Immune System
7 The Autonomic Nervous System
8 Examining Psychological Influences on Asthma Using Neuroimaging
9 Treatment of Psychiatric Symptoms to Improve Asthma and Health-Related Quality of Life
10 Pharmacologic Treatment
11 Behavioral Treatment
12 Conclusions
13 References

14 The Brain and Asthma: What Are the Linkages?
Busse, W.W. (Madison, Wisc.)

14 Abstract
15 Differences in Acute versus Chronic Stress and Their Potential Role in Asthma
16 Models in Asthma to Study the Effect of Stress on Airway Inflammation
17 Socioeconomic Status, Stress and Th2 Expression
18 Use of Animal Models to Gain Insight to the Effects of Stress on Allergic Inflammation
19 How Is the Central Nervous System, or Brain, Involved in the Allergic Airway Response in Asthma
20 and How May this Relate to Stress?
21 Conclusions
22 References

32 Stress-Related Programming of Autonomic Imbalance: Role in Allergy and Asthma
Wright, R.J. (Boston, Mass.)

32 Abstract
33 Autonomic Imbalance and Allergy
34 Pre- and Postnatal Stress and Physiologic Programming
35 General Stress Paradigm
36 Perinatal Programming of Autonomic Reactivity
48 Role of Parasympathetic Nerves and Muscarinic Receptors in Allergy and Asthma
Scott, G.D.; Fryer, A.D. (Portland, Oreg.)

Abstract
Parasympathetic Signaling Controls Organ Functions Relevant to Allergy
General Anatomy and Signaling of the Parasympathetic Nervous System
Parasympathetic Control of the Lung
Muscarinic Receptor Changes on Airway Smooth Muscle
Dysfunctional Parasympathetic Nerve Control of Airway Smooth Muscle
Dysfunctional Parasympathetic Signaling and Airway Hypersecretion
Parasympathetic Nerves and Muscarinic Signaling as Therapeutic Targets for Asthma
Parasympathetic Control of the Nose
Dysfunctional Parasympathetic Signaling Causes Hypersecretion in the Nose
Parasympathetic Dysregulation of Vasodilation and Vascular Permeability
Parasympathetic Nerves and Muscarinic Receptor Signaling as Therapeutic Targets for Allergic Rhinitis
Parasympathetic Control of the Eye
Dysfunctional Parasympathetic Control of Lacrimation
Parasympathetic Control of the Intestine
Parasympathetic Causes of Intestinal Dysmotility
Parasympathetic Nerves and Muscarinic Signaling as Therapeutic Targets for IBS
Parasympathetic Control of the Skin
Role of Parasympathetic Nerves in Inflammation and Disease Progression
Parasympathetic Proinflammatory Signaling, Recruitment, and Cell Adhesion
Involvement of Parasympathetic Nerves in Tissue Remodeling
Concluding Remarks
References

70 Developmental Programming of Allergic Diseases
Pincus, M. (Berlin); Arck, P. (Hamburg)

Abstract
Life before ‘Life’
Developmental Programming of the Endocrine System
Developmental Programming of the Immune System
Developmental Programming of the Nervous System
Conclusions
References

85 Mind-Body Interrelationship in DNA Methylation
Szyf, M. (Montreal, Que.)

Abstract
DNA Methylation
DNA Methylation Confers Cell Type Identity on Identical DNA Sequences
DNA Methylation as a Mechanism of Genomewide and Systemwide Genome Adaptation
DNA Methylation Alterations in Response to Early Life Adversity during Gestation
DNA Methylation Responses to Social Adversity after Birth
Broad Response of the DNA Methylation State to Early Life Adversity
The DNA Methylation Response to Early Life Social Adversity Is Not Limited to the Brain and Includes the Immune System as Well
Role of Microbiome in Regulating the HPA Axis and Its Relevance to Allergy
Sudo, N. (Fukuoka)

Abstract
HPA Axis Sensitivity to Stress Is Determined by Early-Life Environmental Factors
Normal Functioning of the HPA Axis is Necessary for Diminishing Ongoing Allergic Reactions
Gut Microbiota Play a Critical Role in Determining the Setpoint of the HPA Axis
Brain Network Recognizes Signaling of Microbial Colonization in Gut and Elicits Transient Increases in Plasma Corticosterone Levels
Possible Gut Microbe-Derived Neurotransmitters and Gases Involved in Microbiome-Brain Signaling
Epigenetics May Be a Key Mechanism Explaining the Modification of the HPA Axis by the Microbiome
Conclusion and Perspectives
References

Autonomic Regulation of Anti-Inflammatory Activities from Salivary Glands
Mathison, R.D.; Davison, J.S. (Calgary, Alta.); St. Laurent, C.D.; Befus, A.D. (Edmonton, Alta.)

Abstract
Cervical Sympathetic Trunk-Submandibular Gland Axis
Innervation of the Submandibular Glands
Submandibular Glands
Submandibular Rat-1 Protein, Its Derivatives and Human Homologues
Submandibular Gland Peptide T (SGP-T)
A Human Homologue of Sialorphin – Opiorphin
Human Homologues of SGP-T
Other Salivary Anti-inflammatory Peptides
Biological Activities of FEG and Its Derivatives
Cellular Mechanism of Action of SGP-T and feG
Genomics of SMR1 and its Homologues
Autonomic Control of Salivary Gland Endocrine Secretion
CST-SMG Axis in Humans
Conclusions
References

The Mast Cell-Nerve Functional Unit: A Key Component of Physiologic and Pathophysiologic Responses
Forsythe, P.; Bienenstock, J. (Hamilton, Ont.)

Abstract
Mast Cells
258 Neuroimaging Studies in Patients Suffering Chronically from Itch
259 Key Anatomic Brain Regions of Itch and Their Function
259 Insular Cortex
259 Pre-Supplementary Motor Area and Primary Motor Cortex, Motor Part of the Cingulate Cortex
262 Thalamus and Primary Somatosensory Cortex
262 Inferior Parietal Cortex and Dorsolateral Prefrontal Cortex
263 Conclusion
263 Acknowledgement
264 References

266 Author Index
267 Subject Index
Preface

Until a few decades ago, many allergic manifestations were largely regarded as being psychosomatic in origin. This was particularly thought to apply to asthma even though it had been demonstrated that skin allergic reactions could be adoptively transferred from one patient to another with serum in the famous Prausnitz-Kustner reaction [1]. The identification of the role of mast cells in allergy and their content of histamine helped to emphasize the biological nature of allergic reactions [2], and this was finally resolved with the identification of IgE as the key antibody responsible in mice by Ishizaka and Ishizaka [3]. The final confirmation that this not only applied to rodents but also humans in the clinical setting, came with the discovery of a human IgE equivalent by Johansson and Bennich [4].

The subsequent identification that asthma was an inflammatory disease [5], as with many discoveries in medicine, really engendered a paradigm shift away from a consideration of the role of the brain and nervous system in allergy and especially in asthma. In recent times it has become increasingly clear that the immune and nervous systems are integrated and that constant bidirectional communication is occurring between them, and the term psychoneuroimmunology has been used to describe this [6]. Most immune cells possess receptors for neurotransmitters and neurotrophic factors, and indeed also have the capacity to synthesize many of them. That the brain is often involved in modulating inflammation and immune activity has now been well described in the literature, and we showed some time ago that it was possible to condition mast cells to degranulate using a Pavlovian conditioning model [7]. More recently, the potential role of chronic stress in allergic disease has been identified and raises the important question of the role of psychosocial circumstances as determinants of various allergic conditions.

The mechanisms and pathways whereby the nervous system may be involved in beneficial or detrimental outcomes in allergy are still somewhat obscure, but new light is being shed on this complex biology through technological and conceptual advances. These include magnetic resonance imaging of the brain and epigenetics. The chapters in this book cover many but not all aspects of the potential and actual role of the nervous system in the modulation of allergy, and our hope is that they
may help restore some balance in our thinking about allergic disease and offer a more holistic approach to its understanding and treatment.

John Bienenstock

References