Rapid Differentiation of *Candida dubliniensis* from *Candida albicans* by Early D-Xylose Assimilation

A.N.B. Ellepola\(^a\) Z.U. Khan\(^b\)

\(^a\)Department of Bioclinical Sciences, Faculty of Dentistry, and \(^b\)Department of Microbiology, Faculty of Medicine, Health Sciences Center, Kuwait University, Jabriya, Kuwait

Key Words

D-Xylose • *Candida albicans* • *Candida dubliniensis*

Abstract

Objective: To determine if D-xylose (XYL) and/or a-methyl-D-glucoside (MDG) assimilation can be used reliably as a rapid test to differentiate *Candida dubliniensis* from *Candida albicans* at an earlier time point such as 2 h after inoculation.

Materials and Methods: Thirty isolates of *C. albicans* and *C. dubliniensis* recovered from anatomical sites and clinical specimens were used. Isolates were inoculated into the API 20C AUX yeast identification system, and incubated at 30°C. XYL and MDG assimilations were read at 2-hour intervals beginning 2 h after the initial inoculation and up to 24 h of incubation; thereafter, results were read after 48 and 72 h.

Results: Twenty-nine (97%) *C. albicans* isolates had assimilated XYL at 16 h and, by 24 h, all isolates were positive for XYL assimilation. None of the *C. dubliniensis* isolates assimilated XYL. The MDG assimilation revealed that 24, 40, 92 and 100% of *C. albicans* isolates became positive after 16, 24, 48 and 72 h of incubation, respectively, whereas only 3% of *C. dubliniensis* isolates assimilated MDG after 72 h.

Conclusions: The findings showed that it is possible to rapidly differentiate *C. albicans* from *C. dubliniensis* isolates using the API 20C AUX carbohydrate assimilation kits after 16 h of incubation at 30°C based on the XYL assimilation.

Copyright © 2012 S. Karger AG, Basel

Dr. Arjuna N.B. Ellepola, BDS (Hon), PhD, FIBiol (UK)
Department of Bioclinical Sciences, Faculty of Dentistry
Health Sciences Center, Kuwait University, P.O. Box 24923
Safat 13110 (Kuwait)
Tel. +965 2498 6714, E-Mail arjuna@hsc.edu.kw
Several assays based on phenotypic characteristics have been used in an attempt to distinguish *C. dubliniensis* from *C. albicans*, including characteristic chlamydospore formation, growth at elevated temperatures, carbohydrate assimilation patterns, colony color on CHROMagar Candida medium, and β-glucoside production. However, in multiple publications variable success using each of these methods has been reported because of the phenotypic similarities shared by these two species [10–13]. To circumvent these difficulties, molecular methods have been developed [14, 15]. Latex agglutination tests, fluorescent in situ hybridization with peptic nucleic acid probes and immunochromatographic assays have also been used for this purpose [16–18]. However, most of these procedures have not been widely used or are not well-suited to the routine clinical microbiology laboratory.

Whereas molecular identification is the most specific method to differentiate these species, an easy-to-perform phenotypic test, if reliable, would be a valuable tool for this purpose. Perhaps the most convenient and common method for *Candida* species identification consist of strips or plates containing substrates for carbohydrate assimilation and/or enzyme detection. These phenotypic tests are commercially available in a variety of formats. One such phenotypic test is the API 20C AUX yeast identification system [10–13]. This system uses an increase in turbidity in each of a series of wells containing different substrates to produce a biochemical profile. The biochemical profile produced is then translated into a numerical code that is deciphered using the manufacturer’s reference manual.

D-xylose (XYL) is one of the substrates present in the API 20C AUX yeast identification system. Assimilation of XYL has been reported to be a reproducible and reliable test for the differentiation of *C. dubliniensis* from *C. albicans* [10–13]. In addition assimilation of α-methyl-D-glucoside (α-MDG) has also been somewhat helpful for the differentiation of these two species [11]. These findings were based upon the use of API 20C AUX test strips that were incubated for 72 h at 30°C as recommended by the manufacturer [10, 12, 13]. It was of interest, therefore, to determine if XYL and/or α-MDG assimilation could be used to rapidly differentiate *C. dubliniensis* from *C. albicans* at an earlier time point, rather than waiting for 72 h to determine the outcome. Hence, the main aim of this study was to determine the time course of XYL and α-MDG assimilation beginning as early as 2 h after inoculation of *C. dubliniensis* and *C. albicans* isolates into API 20C AUX yeast identification test strips in an attempt to determine the utility of such a test system for the early differentiation of these two species.

Materials and Methods

Microorganisms

Thirty isolates each of *C. albicans* and *C. dubliniensis* recovered from various anatomical sites and clinical specimens were used for this study. All *C. albicans* and 23 *C. dubliniensis* isolates were oral isolates obtained from patients attending the Kuwait University Dental Clinic. The remaining *C. dubliniensis* isolates were from blood (n = 1) and urine samples (n = 6). All yeast isolates were tested for germ tube formation as previously described [19]. Thereafter a presumptive identification of *Candida* isolates was performed on the basis of the characteristics of colony color on CHROMagar Candida medium (Becton Dickinson Co., Sparks, USA). All isolates produced green colonies. All the isolates were further identified based on their carbohydrate assimilation pattern by API 20C AUX yeast identification system (bioMerieux, France). The identity of *C. dubliniensis* was confirmed by production of rough colonies with hynpoh fringes and chlamydospores on simplified sunflower seed agar and by using seminested PCR amplification of internal transcribed spacer (ITS)-2 region of rDNA followed by direct DNA sequencing of the ITS region of rDNA as described previously [20].

Carbohydrate Assimilation

For each isolate two sets of API 20C AUX yeast identification kits were used. The carbohydrate assimilation pattern of all of the isolates was examined after growth in the API 20C AUX yeast identification system at 30°C for 72 h as recommended by the manufacturer (bioMerieux Vitek, Inc., Hazelwood, Mo., USA). Before inoculation into the API 20C AUX yeast identification kits, all isolates were subcultured on Sabouraud dextrose agar Emmons plates (BBL, Becton Dickinson Microbiology Systems, Cockeysville, Md., USA) and incubated at 36°C for 24 h. Single colonies were used for the preparation of each inoculum as suggested by the manufacturer. The API 20C AUX yeast identification strips were filled with inoculated medium and incubated for 72 h at 30°C. In the same time, to determine the earliest time point at which *C. albicans* and *C. dubliniensis* isolates might be differentiated based on XYL and/or α-MDG assimilation, the patterns were observed at 2-hour intervals beginning at 2 h after initial inoculation up to 24 h; thereafter, strips were observed at 48 and 72 h. Results were read independently by two laboratory staff members. Cupules demonstrating significant turbidity relative to the negative control were considered to be positive and there was no discrepancy in the readings reported by the two laboratory staff members.

Results

Of the 30 *C. albicans* isolates, 29 (97%) had assimilated XYL at 16 h and, by 24 h, all *C. albicans* isolates were positive for XYL assimilation. Although all wells containing *C. albicans* isolates began to develop some turbidity by 8–12 h after incubation, positive turbidity, as defined by the manufacturer, was observed at as early as 16 h for 29 of 30 isolates (97%) and at 24 h for the remain-
Discussion

In this study, XYL assimilation was positive for most of the C. albicans isolates after 16 h of incubation at 30°C and was negative for all C. dubliniensis isolates. Previous studies [10, 12, 13] had shown that characteristic assimilation patterns for XYL could be useful for the differentiation of C. albicans from C. dubliniensis after 72 h of incubation in the API 20C AUX carbohydrate assimilation test system [10, 12, 13]. However, our data showed that XYL assimilation could be used to differentiate 96% of all C. albicans isolates from C. dubliniensis isolates at as early as 16 h.

In the current study, while all C. albicans isolates assimilated α-MDG, 97% C. dubliniensis isolates did not assimilate α-MDG even after 72 h of incubation at 30°C (table 1). Assimilation of α-MDG has also been suggested to be a useful method for the differentiation of C. albicans from C. dubliniensis after 72 h of incubation at 30°C in the API 20C AUX system [10, 12, 13]. Our study confirmed that of Sancak et al. [10], who did not find any C. dubliniensis isolates capable of assimilating α-MDG whereas 99% of C. albicans isolates assimilated α-MDG. However, results for α-MDG assimilation were somewhat more equivocal in studies by Pincus et al. [13] and Gales et al. [12]. Pincus et al. [13] showed that 85% of C. albicans assimilated α-MDG whereas C. dubliniensis isolates did not. Gales et al. [12] reported that only 54% of the C. albicans isolates assimilated α-MDG while C. dubliniensis isolates did not assimilate α-MDG. Because of these discordant findings on C. albicans, α-MDG assimilation may not be a reliable method for differentiating these two species.

Hence these findings indicate that it is possible to differentiate a large majority of (97%) C. albicans from C. dubliniensis isolates as early as 16 h by comparing their XYL assimilation patterns. Comparing this method with other phenotypic identification methods such as incubation at different temperatures and growth in different culture media as done previously in our laboratory [21, 22] as well as other laboratories [23] will also help to determine the best possible easy-to-perform, early identification method to differentiate these two Candida species.

Table 1. Number (%) of C. albicans (CA) and C. dubliniensis (CD) isolates assimilating XYL and α-MDG at 30°C after progressive incubation intervals

<table>
<thead>
<tr>
<th>Incubation time, h</th>
<th>XYL</th>
<th>α-MDG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CA</td>
<td>CD</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td>CD</td>
</tr>
<tr>
<td>2–6*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>*</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>*</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>29 (97)</td>
<td>7 (24)</td>
</tr>
<tr>
<td>24</td>
<td>30 (100)</td>
<td>12 (40)</td>
</tr>
<tr>
<td>48</td>
<td>30 (100)</td>
<td>28 (92)</td>
</tr>
<tr>
<td>72</td>
<td>30 (100)</td>
<td>30 (100)</td>
</tr>
</tbody>
</table>

*None of the isolates showed any turbidity or growth at these time points (2–6 h).

Early identification may be particularly useful in the management of C. albicans and C. dubliniensis infections in immunocompromised individuals because C. dubliniensis has been associated with invasive diseases in such hosts [24]. Although neither C. albicans nor C. dubliniensis has high rates of antifungal drug resistance among isolates derived from blood or other body sites, the rate of azole resistance among oral isolates of C. dubliniensis from HIV-infected patients is much greater [5–8]. Easy to use, rapid assimilation methods have been developed for the differentiation of Candida glabrata from other Candida species, for instance, the GLABRATA RTT test [25] (Fumouze Diagnostics, France) and the rapid-assimilation-of-trehalose test [26]. Hence, it would be of much interest if investigators could try to develop a similar rapid assimilation method using XYL. In fact, as cupules inoculated with C. albicans isolates elicited turbidity with XYL as early as 8 h after incubation (table 1), development of a colorimetric assay to determine XYL assimilation, similar to that of the GLABRATA RTT test, would be a valuable tool for early differentiation between C. dubliniensis from C. albicans.

Conclusions

Our findings showed that C. albicans can be rapidly differentiated from C. dubliniensis isolates using the API 20C AUX carbohydrate assimilation kits after as little as
16 h of incubation at 30°C based on XYL assimilation. This method, however, will be more reliable in germ-tube-positive Candida producing green colonies in CHROMagar Candida medium, and it is advisable to confirm the identification with molecular testing.

Acknowledgments

The technical support from Ms. Rachel Chandy, Mycology Laboratory, Faculty of Medicine, Kuwait University is appreciated and thankfully acknowledged.

References

